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ABSTRACT

We present a catalogue of 497 galaxy-galaxy strong lenses in the Euclid Quick Release 1 data (63 deg2). In the initial 0.45% of Euclid’s surveys,
we double the total number of known lens candidates with space-based imaging. Our catalogue includes 250 grade A candidates, the vast majority
of which (243) were previously unpublished. Euclid’s resolution reveals rare lens configurations of scientific value including double-source-plane
lenses, edge-on lenses, complete Einstein rings, and quadruply-imaged lenses. We resolve lenses with small Einstein radii (θE < 1′′) in large
numbers for the first time. These lenses are found through an initial sweep by deep learning models, followed by Space Warps citizen scientist
inspection, expert vetting, and system-by-system modelling. Our search approach scales straightforwardly to Euclid Data Release 1 and, without
changes, would yield approximately 7000 high-confidence (grade A or B) lens candidates by late 2026. Further extrapolating to the complete
Euclid Wide Survey implies a likely yield of over 100 000 high-confidence candidates, transforming strong lensing science.

Key words. Gravitational lensing: strong, Catalogs, Methods: statistical

1. Introduction

Euclid will resolve 1.5 billion galaxies over the next ten years
(Euclid Collaboration: Mellier et al. 2024). Within those 1.5
billion galaxies will be of order 100 000 galaxy-galaxy strong
lenses (Collett 2015) – around 100 times more than currently
known. These lenses will enable model-independent tests of
cosmology (Sharma et al. 2023), break degeneracies in dark
energy parameters (Li et al. 2024), test dark matter models at
small scales through the detection of low-mass dark subhalos
(O’Riordan et al. 2023), measure the density profile of massive
galaxies to determine how they grow, and more (see Shajib
et al. 2024 for a review). In this series of papers, we develop
and apply a method (our ‘discovery engine’) to find those lenses.

Most strong lenses are expected to have Einstein radii
smaller than 1 .′′0, below the resolution limits of ground-based
surveys (Collett 2015; Sonnenfeld et al. 2023). Euclid’s space-
based point spread function (PSF) can resolve lenses down to
an Einstein radii of around 0 .′′6 (Sect. 7) – close to the peak
of the Einstein radii distribution. The combination of resolving
smaller Einstein radii with a wide 0.5 deg2 field-of-view (Euclid
Collaboration: Cropper et al. 2024; Euclid Collaboration: Jahnke
et al. 2024) makes Euclid the most efficient instrument for find-
ing strong lenses ever built.

The rate of detectable lenses in Euclid is 10 to 100 times
higher than in previous wide-area surveys, as shown in Fig. 1
(citations in caption). Visual searches of DES, DESI Legacy Sur-
vey, UNIONS, KiDS, and PanSTARSS find around 0.1 lenses

⋆ e-mail: m.walmsley@utoronto.ca

per deg2. Searches of HSC, which has LSST-like depth, iden-
tify around 1 lens per deg2. Preliminary searches of the Eu-
clid Early Release Observations (Acevedo Barroso et al. 2024;
Nagam et al. 2025) identify 10 lenses per deg2. This work in-
troduces a visual search through the first images from Euclid’s
main surveys – Quick Data Release 1 (Q1, Euclid Collaboration:
Aussel et al. 2025).

Previous visual searches for galaxy-galaxy strong lenses typ-
ically include at least one of three common components (see
Lemon et al. 2024 Sect. 4 for a recent review). Expert visual in-
spection recruits professional astronomers to look through can-
didate images. Experts typically search 1 to 10 000 images due
to the time required to look through each image, restricting ap-
plication to specific fields (e.g., Barkana et al. 1999; Fassnacht
et al. 2004; Faure et al. 2008) or to specific sources prioritised
using catalogue-level measurements (e.g., Myers et al. 2003; Ag-
nello & Spiniello 2019). Citizen science efforts instead distribute
the inspection task among a ‘crowd’ of volunteers – members of
the public who freely contribute their time to find lenses. This
approach was pioneered by Space Warps (Marshall et al. 2016;
More et al. 2016) and has also been applied by Hubble Asteroid
Hunters (Garvin et al. 2022). The Space Warps Hyper Suprime-
Cam (HSC) projects searched approximately 150 000 galaxies
per month (Sonnenfeld et al. 2020), far faster than expert inspec-
tion and of comparable scale to current surveys (prior to Eu-
clid). Finally, automated image searches augment human visual
searches by using algorithms to prioritise the most promising
galaxies for inspection. Recent automated searches universally
use deep learning models. Supervised models trained with la-
belled lens and non-lens examples are the most common (e.g.,
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Fig. 1. Lens-finding capabilities of Euclid compared to recent surveys.
We show the number of A/B grade lenses detected per deg2 vs. total
survey area in deg2, with contours of constant total lenses detected. The
‘Euclid Q1’ datapoint uses lenses detected in this series of works. Es-
timates for Euclid DR1 and Euclid Wide multiply our rate of detected
lenses with the appropriate area; see Sect. 9 for detailed forecasting
scenarios. All numbers are approximate due to the subjective nature
of grading and the varying details of each search approach, and from
searches focusing on galaxy-galaxy lenses in alignment with this se-
ries of works. References: HST COSMOS (Faure et al. 2008), CFHTLS
(Gavazzi et al. 2014), HSC (Sonnenfeld et al. 2018, 2020; Cañameras
et al. 2021; Shu et al. 2022; Wong et al. 2022; Jaelani et al. 2024;
Schuldt et al. 2025a,b), DES (Jacobs et al. 2019; Rojas et al. 2023;
González et al. 2025), DESI Legacy Surveys (Huang et al. 2020, 2021;
Storfer et al. 2024), UNIONS (Savary et al. 2022; Acevedo Barroso
et al. 2025), KiDS (Li et al. 2021), PanSTARSS (Cañameras et al. 2020).

Petrillo et al. 2017, 2019a,b; Lanusse et al. 2018; Schaefer et al.
2018; Pourrahmani et al. 2018; Davies et al. 2019; Metcalf et al.
2019; Cañameras et al. 2020; Huang et al. 2020; Gentile et al.
2021; Li et al. 2020, 2021; Rezaei et al. 2022; Rojas et al. 2022;
Savary et al. 2022; Canameras et al. 2024; Pearce-Casey et al.
2024; Huang et al. 2025). New directions include self-supervised
learning (Stein et al. 2022) and ensembles (e.g., Andika et al.
2023; Nagam et al. 2023, 2024; Ishida et al. 2025). Most known
strong lenses were identified by a deep learning sweep followed
by expert inspection.

In this work, we combine the strengths of AI, citizen
scientists, and experts into a single ‘discovery engine’ that
efficiently searches through Euclid Quick Release 1 (Euclid
Quick Release Q1 2025) and, ultimately, through all Euclid’s
surveys. We use an ensemble of deep learning models to select
galaxies to show to citizen science volunteers. The volun-
teers then select promising candidates for validation through
expert vetting and detailed lens modelling. Our discoveries
vindicate the science value of AI foundation models in as-
tronomy; the best-performing model in our ensemble, Zoobot,
is a generalist model not specifically designed for strong lensing.

We find 497 strong lens candidates in Euclid’s initial Q1
release – a similar count to recent searches of wide-area sur-
veys (Jacobs et al. 2019; Stein et al. 2022; Cañameras et al.
2021; Schuldt et al. 2025a,b; González et al. 2025) despite
covering only 50 deg2. We double the total number of known
lens candidates with space-based imaging (Bolton et al. 2008;
Huang et al. 2020). Our discoveries include rare galaxy-galaxy

configurations, most notably double source plane lenses. Dou-
ble source plane lenses are considered valuable complemen-
tary probes to constrain cosmological parameters and dark en-
ergy (Gavazzi et al. 2007; Collett & Auger 2014). Such sys-
tems are more likely to be found in high-spatial resolution imag-
ing rather than ground-based seeing-limited surveys. We explore
Euclid’s promise in detecting these systems (Euclid Collabora-
tion: Li et al. 2025). We also identify approximately 20 candidate
edge-on lens galaxies; these may help break the degeneracy be-
tween baryon and dark matter mass slopes (Treu et al. 2011).
We show that Euclid can find lenses around low-mass galaxies,
with a majority (56%) of our successfully-modelled candidates
having Einstein radii between 0 .′′5 and 1 .′′0. Looking ahead, our
Q1 search is a practical test of lens finding in Euclid and allows
us a chance to optimise our approach ahead of the much larger
Euclid Data Release 1 (DR1; 1900 deg2 in late 2026).

This overview paper opens a series of papers detailing
our Q1 search. Euclid Collaboration: Rojas et al. (2025)
presents early discoveries using spectroscopically-identified
high-velocity-dispersion galaxies, which also form part of the
initial training set for our machine learning models. Euclid Col-
laboration: Lines et al. (2025) presents those machine learning
models and compares their performance on real Euclid images.
Euclid Collaboration: Li et al. (2025) presents the double source
plane lenses discovered in Q1, with preliminary modelling for
forecasting cosmological parameters. Euclid Collaboration: Hol-
loway et al. (2025) presents a Bayesian ensemble method com-
bining lens classifiers to further optimise lens discovery within
our discovery engine for DR1.

2. Design motivation

Designing a search system is challenging because Euclid has
both an extremely large number of galaxies to search and an ex-
tremely high rate of detectable strong lenses. Euclid’s surveys
will ultimately find 300 million galaxies brighter than IE < 22.5
mag (our primary selection cut, see Sect. 3). This is on par with
the largest strong lens searches to date (Cañameras et al. 2021;
Schuldt et al. 2025a; González et al. 2025). Larger samples re-
quire more accurate automated searches; otherwise, the num-
ber of false positives (mistakenly flagged non-lenses) grows to
overwhelm any capacity for manual inspection. To illustrate: ap-
plying a 99.9% accurate machine learning model to one million
galaxies would generate one thousand false positives, which is
easily feasible for manual inspection, while applying the same
model to 100 million galaxies would generate 100 thousand false
positives. Further, Euclid’s order-of-magnitude higher rate of de-
tectable lenses (Fig. 1) requires a high search efficiency through-
out our system. Astronomical searches typically first apply a
cheap (in time, compute, etc.) filter to everything, and then se-
quentially apply more expensive filters as the remaining sample
shrinks. When lenses are more common, we expect to keep more
lens candidates at every stage, which ‘costs’ more than applying
the same series of filters to a survey of equal size but containing
fewer lenses. Finally, in order to share our catalogue alongside
the Q1 public data release, we needed to carry out our search in
around six weeks.

Our approach employs three different lens finding methods:
a broad deep learning search, refinement by citizen scientists,
and finally confirmation by expert visual inspection. We briefly
review each one below.

Deep learning models can search for strong lenses in arbitrar-
ily large numbers of images but the resulting samples are gener-
ally impure, i.e., deep learning-identified samples often contain
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(a) Double source plane (left) and quadruple image (right) lens candidates

(b) Top-ranked edge-on lens candidates

(c) Top-ranked Einstein ring lens candidates

(d) Top-ranked lens candidates (excluding those above) shown with Euclid (upper row) vs. Legacy Survey (lower row) images

(e) Top-ranked lens candidates, continued (see Fig. A.1 for extended gallery)

Fig. 2. Notable and highest-scoring strong lens candidates found in Q1. Includes Einstein rings, double source plane lenses, quads, and edge-on
lenses. Each cutout has a 10′′ field-of-view. Figure A.1 shows strong lens candidates as a function of expert visual inspection score.

a high rate of non-lenses. Sonnenfeld et al. (2020) notes that
experts validated 46 of 1480 lens candidates found by YATTAL-
ENS in HSC (Sonnenfeld et al. 2018), 89 of 3500 found in KiDS
by Petrillo et al. (2019b), etc. Previous work suggests that train-
ing on simulations leads to models that are excellent at finding

simulated lenses but struggle when presented with real data, re-
flecting a broader ‘sim to real’ generalisation gap well-known in
computer science (Zhao et al. 2020) and astronomy (Margalef-
Bentabol et al. 2024). Painting simulated lenses onto real images
mitigates this issue (Petrillo et al. 2017; Jacobs et al. 2017; Ro-
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jas et al. 2022; Cañameras et al. 2020, 2021). Using foundation
models, pre-trained on real images with labels collected for other
purposes, also mitigates this issue (Pearce-Casey et al. 2024). We
apply both strategies (Sect. 4).

Citizen scientists can search large, but not limitless, numbers
of images. They are adept at finding the unexpected and have
shown that they can extrapolate beyond their training sample set
(Lintott et al. 2009; Geach et al. 2015). Previous citizen science
searches for strong lenses have mixed in known images (simula-
tions or previously-discovered lenses) to measure how individual
volunteers respond, and then combined their responses on new
images via Bayes’ rule (see Sect. 5).

Professional astronomers (‘experts’ hereafter) are generally
assumed to have high accuracy and low variance in identifying
lenses and recognising rare configurations - but can only search
small (of order 10k) sets of images. This is particularly true when
showing each image to several experts, as required for robust and
consistent grading (Rojas et al. 2023).

We combine all three search approaches, with each one play-
ing to their strengths. Deep learning models make an initial pri-
oritisation, to discard the bulk of galaxies that do not exhibit
any features consistent with lensing. The machine learning (ML)
models are also likely to incorrectly flag unusual images (e.g.,
instrumental artifacts) and lens-like galaxies (e.g., ring galaxies,
galaxies with faint spiral arms or tidal tails, etc.). This large-but-
impure sample is sent to citizen scientists to refine the sample,
prioritising genuine lenses and rejecting obvious-to-a-human ar-
tifacts. The best candidates are then sent to professional as-
tronomers who are experts in strong lens identification (members
of the Euclid Strong Lensing Working Group) for a final grade
on visual appearance. Finally, we pass the promising candidates
to a modelling pipeline (PyAutoLens, Nightingale et al. 2021)
to verify if the image can be matched to a physical source and
lens configuration.

This combination of search approaches is a natural and long-
foreseen step in lens finding, but is only now being realised.
Recently-published work by González et al. (2025) indepen-
dently uses a combination of ML model/volunteer/expert combi-
nation for searching 230 million (DES) images and successfully
identifies 665 ‘probable’ candidates (147 new). We ultimately
find more new lenses and at a far higher rate, but this likely re-
flects our different target survey more than any differences in
approach – DES has already been extensively searched and Eu-
clid’s sensitivity and spatial resolution (FWHMEuc

VIS ∼ 0 .′′16 for
Euclid, FWHMDES

g ∼0 .′′9 for DES) can better resolve small Ein-
stein radii and fainter lensed images than ground-based surveys.
We both use a training set combining hand-selected non-lenses
with known and painted lenses, we both use the Space Warps cit-
izen science project for volunteer annotation, and we both show
a substantial increase in machine-selected lens purity compared
to previous searches. The key differences are that this work uses
lens modelling for additional validation, and that Gonzalez et. al.
focused on using a vision transformer while this work uses five
diverse deep learning models (including a vision transformer).
Our best-performing model is an astronomy foundation model
not specifically designed for lens finding (Sect. 4).

3. Data

Euclid is uniquely capable at finding strong lenses because it
combines a space-based PSF with a wide field-of-view. This re-
flects Euclid’s design as a survey space telescope intended to
deliver high image quality over a wide area. Table 1 compares

Table 1. Approximate PSF (or seeing, when ground-based) and field-of-
view for instruments used in previous strong lens searches, compared to
Euclid. DECam data for the Dark Energy Survey (Abbott et al. 2018),
Hyper Suprime-Cam (HSC) data for the HSC Wide survey (Aihara et al.
2019). Hubble Space Telescope and James Webb Space Telescope val-
ues from Space Telescope Science Institute documentation.

Instrument PSF Seeing Field-of-view

DECam (DES, 620 nm) 0 .′′9 10 800′

HSC (Wide, 620 nm) 0 .′′7 6480′

HST WFC3 (700 nm) 0 .′′07 7.′3

JWST NIRCam (700 nm) 0 .′′03 9.′7

Euclid VIS (700 nm) 0 .′′16 1900′

the PSF and field-of-view of Euclid with other instruments used
for previous lens searches.

The Euclid Wide Survey (EWS) will ultimately image ap-
proximately 14 400 deg2. Q1 (Euclid Collaboration: Aussel et al.
2025) is the first data release of EWS-like images, captured to the
same depth and processed with the same pipeline. Q1 is there-
fore ideal for demonstrating the science that Euclid will enable.
We will show that – despite covering only 63 deg2, one-three-
hundredth of the area of the final EWS – Q1 includes as many
detectable strong lenses as the largest lens searches to date.

We select the strong lens search sample from the Q1 MERge
catalogue (Euclid Collaboration: Romelli et al. 2025) by apply-
ing the following cuts. We require IE ≤ 22.5 mag (corresponding
to FLUX_DETECTION_TOTAL ≥ 3.63078) to restrict our search
to reasonably bright sources. As with other searches, the lens-
ing rate strongly depends on selection cuts – here, preselection
of galaxies that are bright in VIS. By cutting at IE < 22.5 mag,
we removed ∼90% of galaxies in Q1, in exchange for throwing
away ∼ 25% of lenses. The lensing rate is lower for galaxies that
are faint in IE since they are either: low mass, with smaller lens-
ing cross sections; or, high redshift with fewer sources behind
them.

Brightness and extent are strongly correlated and so our
IE ≤ 22.5 mag cut also acts as a size cut; our 5th percentile
has a SEGMENTATION_AREA (pixel mask) of 259px. We also
require VIS_DET == 1 to select VIS-detected sources, no
GAIA_CROSSMATCH and MUMAX_MINUS_MAG ≥ −2.6 to remove
stars and point-like objects, MU_MAX ≥ 15.0 to remove saturated
stars, and SPURIOUS_PROB < 0.05 to reject artifacts. This gives
a search sample of 1 086 556 sources (about 20 000 sources per
deg2).

We use images from Euclid’s VIS and NISP instruments
(Euclid Collaboration: Cropper et al. 2024; Euclid Collabora-
tion: Jahnke et al. 2024) as processed for Q1 (Euclid Collabora-
tion: McCracken et al. 2025; Euclid Collaboration: Polenta et al.
2025; Euclid Collaboration: Romelli et al. 2025) We access the
Euclid images via the ESA Science Archive Service and the ESA
Datalabs platform (ESA Datalabs 2021). We cut out each source
with a field-of-view of 15′′ (or 150×150 MERge mosaic pixels,
which are native instrument pixels resampled to 0 .′′1 per pixel).
We then adjust the raw flux values in each cutout into images
suitable for human inspection, described below, and save the fi-
nal images as colour JPEG for export and display.

The raw flux values recorded from astronomical sources is
typically rescaled from an extremely high dynamic range to a
range small enough for viewing. We create cutouts with one
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Fig. 3. Illustration of image processing options. The same lens candi-
date is shown with each scaling (arcsinh or midtone transfer function)
and colouring (greyscale IE, YE/median/IE, JE/median/IE, JE/YE/IE) op-
tion. To maximise resolution we set the luminance using the IE image in
all cases.

of two scalings: either arcsinh scaling, which ‘boosts the lows’
with the aim of making fainter sources more visible, or mid-
tone transfer function (MTF) scaling, which ‘boosts the mids’
with the aim of making typical sources clearly visible against
the dark background. Arcsinh scaling (Lupton et al. 2004) uses
x′ = sinh−1(Qx), where Q sets the aggressiveness of the scaling
(we chose 500/1/0.5 for IE/YE/JE). MTF scaling applies

x′ =
(m − 1)x

(2m − 1)x − m
, (1)

where x is the original pixel value and m is a stretch factor (we
chose to set this automatically such that the central 100×100 pix-
els had a mean of 0.2). We also apply a percentile clip of 99.85%
to remove the most extreme flux values before scaling.

Colour images require three channels (red/green/blue). We
created cutouts with the following combinations: YE/median1/IE,
JE/median/IE, and JE/YE/IE, plus a greyscale VIS-only version.
Naively combining the IE and NISP bands into RGB images led
to ‘blurrier’ images because of the lower resolution NISP bands.
Instead, we constructed our images using IE for the luminosity
and all selected bands for the hue and saturation (HSL process-
ing).

Figure 3 shows an example cutout processed with each pos-
sible processing choice. There is no ideal choice for all galaxies;
instead, we provided all image versions to the machine-learning
teams (Sect. 4 and Euclid Collaboration: Lines et al. 2025) and
we showed grids combining multiple image versions to volun-
teers (Sect. 5) and experts (Sect. 6).

4. Machine learning overview

Our strategy is informed by Pearce-Casey et al. (2024), here-
after PC25. PC25 invited Euclid Consortium members to submit
automated scores for galaxies in the Euclid ERO Perseus field.
Participants were free to use any training dataset and machine
learning approach. Accuracy was evaluated against expert visual
inspection scores collected in parallel and reported in Acevedo
Barroso et al. (2024). The results led PC25 to make two recom-
mendations for training effective models.

First, following earlier work on other surveys (e.g., Petrillo
et al. 2017; Jacobs et al. 2017; Rojas et al. 2022; Cañameras

1 Intuitively, we define YE as red, IE as blue, and fill the green channel
with the median value of each pixel across YE and IE

et al. 2020, 2021; More et al. 2016), PC25 suggest that ‘paint-
ing’ lenses on real galaxies is more effective than training only
on purely simulated images. All but one team trained on purely-
simulated images based on the Euclid Flagship simulations (Eu-
clid Collaboration: Castander et al. 2024). Those models did well
at finding lenses inserted into those simulations, but performed
far worse when applied to real images. This suggests that sim-
ulations may not capture the full diversity of real galaxies, real
artifacts, and real lenses (see also Metcalf et al. 2019). We there-
fore focused on creating painted lenses for our training data.

Second, PC25 found that the Zoobot foundation models had
the best performance. Foundation models (Bommasani et al.
2021) are deep learning models pre-trained on diverse tasks with
plentiful data. Pre-training teaches the models to extract gener-
ally useful features that can then be used for new tasks where
data are scarce. The Zoobot models are pre-trained to answer a
broad set of galaxy morphology questions on real data (Walm-
sley et al. 2023). Strong lensing and galaxy morphology share
similar features – recognising galaxy shapes – and so Zoobot can
recognise strong lenses without any further training, and does so
better than similar models trained from scratch (PC25). We use
an improved ‘Zoobot 2.0’ version (Walmsley et al. 2024) in our
Discovery Engine, as part of a diverse ensemble of models.

Euclid Collaboration: Lines et al. (2025), continuing this pa-
per series, describes the real and simulated training data, outlines
each machine learning approach, makes a detailed comparison of
their results with one another when judged against professional
astronomers, and considers the implications for searching future
Euclid data.

In short, Euclid Collaboration: Lines et al. (2025) again finds
that Zoobot performs best, recovering 143 likely lens candidates
in the top one thousand predictions from one million sources.
But all models do well and no one model recovers every lens
found by every other model. Together, this suggests that our cur-
rent models are already good enough to find transformative num-
bers of strong lenses – Zoobot alone would detect 7500 to 11 000
lens candidates in the top 20 000 galaxies in Euclid DR1 – and
that an ensemble of models with different architectures and train-
ing data would likely improve this further.

5. Citizen science overview

5.1. Approach

We use the dedicated strong gravitational lens search platform
Space Warps, powered by the Zooniverse platform (Marshall
et al. 2016; More et al. 2016), to visually inspect the top scor-
ing cutouts, harnessing the visual inspection power of citizen
scientists. This system has previously been demonstrated to be
efficient and versatile in finding lens candidates for expert in-
spection and sifting out the false positives that dominate initial
lens samples (e.g., Geach et al. 2015; Sonnenfeld et al. 2020;
González et al. 2025).

Our lens candidate inspection strategy was based partly on
what would be feasible in the available six weeks. Because of
the short timeline and uncertain level of citizen participation,
we adopted a phased strategy for classification. While having
the broad goal of classifying images from the parent sample (re-
ferred to as ‘test subjects’) with the top 10k scores of all clas-
sifiers, we initially prioritised classifications of the union of the
top thousand scored test subjects from each of the ML classi-
fiers, under the assumption that these would be the most likely
lens candidates. This allowed us to gauge citizen engagement in
the project and develop the continuing strategy for classification,
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as well as allowing us to compare the performance between the
ML models.

We made an initial estimate of the performance of each
model by considering the recovery of known lenses and the num-
ber of high scoring subjects in the early stages of the search that
were judged to be lenses by experts. Two networks (models 1
and 4, see Euclid Collaboration: Lines et al. 2025; Euclid Col-
laboration: Holloway et al. 2025) were particularly successful
in finding lens candidates and so we supplemented the highest-
ranked 10k galaxies from each network with the next-highest-
ranked 10k-20k galaxies for those two networks only.

Randomly selected objects from the initial galaxy sample
that was shown to all networks were also classified. This en-
abled the comparison of the performance of the citizens and ML
models (see Euclid Collaboration: Holloway et al. 2025) and ad-
ditionally provided an indication of incompleteness to systems
that may have been missed by the ML classifiers.

The project launched on November 19, 2024 and collected
classifications from approximately 1800 users. In total 115 329
unique systems were classified by citizens, including 78 214
high-scoring objects, with the remainder from the random sam-
pling. Collectively, this crowd made 857 278 classifications from
which lens candidates and rejects were identified. The classifica-
tions were made through the Space Warps project (Marshall et al.
2016; More et al. 2016) on the Zooniverse platform.2

Four colour settings were shown to the citizen inspectors
based on combinations of the Euclid VIS+NISP filters with arc-
sinh stretch in IE only, IE-YE, IE-JE and IE-YE-JE in the MTF stretch
(see Sect. 3 for more information). These settings were chosen
based on known and simulated lenses to highlight typical lensing
features. For images where possible lensing signatures are seen,
the citizens were instructed to place at least one marker in the
image. They then have the option to classify the next image or
discuss the subject with other citizens and scientists/experts on
the project’s ‘Talk’ forum.

5.2. Aggregation

Training images were interleaved into the images shown to citi-
zens at a rate of ∼1 in 10. These training images were taken from
Euclid Collaboration: Rojas et al. (2025) and included both pos-
itive examples (simulations) and negatives, e.g., luminous red
galaxies without lensing systems, ring galaxies, mergers, etc. We
included 11 706 such ‘training subjects’, comprising 7320 non-
lenses, and 4386 simulated lenses. These images help to train the
citizens actively (rather than passively via info pages) on a wide
variety of labelled examples. When a citizen classifies a training
image, they receive automated live feedback (e.g., ‘Congratula-
tions!! You’ve spotted a simulated gravitational lens!’) through
a pop-up.

The training images were also used in the aggregation of
classifications received on any given test subject to produce a
crowd probability or ‘score’ for that test subject being a lens
or not. This aggregation process is described in detail in Mar-
shall et al. (2016) and summarised here. The posterior proba-
bility Pk+1(L) ≡ P(L|{CU0 , ...,CUk }) for a given training subject,
having received k + 1 classifications {CU0 , ...,CUk } from users
{U0, ...,Uk} is given by

Pk+1(L) =
P(CUk |L) · Pk(L)

P(CUk |L) · Pk(L) + P(CUk |∼L) · Pk(∼L)
(2)

2 https://www.zooniverse.org/projects/aprajita/space-warps-esa-euclid

where the users’ classifications are denoted as ‘Lens’ (‘L’) or
‘Non-Lens’ (‘∼L’). The classifications on training subjects are
used to continuously update the skill of a given user. The skill
of a user is measured by their ability to correctly identify lenses
as lenses, P(CUk |L), and their ability to correctly identify non-
lenses, P(CUk |∼L). We define these skills as

P(CUk = ‘L′|L) ≈
1 + N‘L′

2 + NL
(3)

and

P(CUk = ‘∼L′|∼L) ≈
1 + N‘∼L′

2 + N∼L
(4)

where N‘L′ (N‘∼L′ ) denotes the number of simulated lenses (non-
lenses) correctly classified and NL (N∼L) is the number of these
systems inspected by that user at that point. The skill therefore
broadly reflects the proportion of images of each class that a user
correctly classified but assigns new users a score of 0.5, such
that their classifications don’t alter subject scores until they have
classified at least one training image. These instantaneous user
skills are used in Eq. (2), allowing higher-skill users to change
the lens posterior probability by a greater extent.

Each subject starts with a score P0(L) = 5 × 10−4 (based on
a ball-park assumption for the approximate frequency of strong
lensing in the galaxy population) which is updated each time a
user classifies an image. This update is made through the Space
Warps Analysis Pipeline (SWAP, Marshall et al. 2016). This up-
date in score or posterior probability is shown in Fig. 4. Each line
or trajectory shows the evolving score per test subject with the
number of classifications made. Systems move to the left (non-
lens) or right (lens) with the size of the shift at each classification
reflecting the (instantaneous) skill of the citizen who classified it.

We ran SWAP in an online mode (Marshall et al. 2016)
whereby the users skills were updated after each classification
and to improve efficiency we retired images in real time based
on their score. We set the retirement threshold as P(L) < 1×10−5

with a minimum of six classifications representing a crowd con-
sensus that a test subject does not contain a lens (shaded region
in Fig. 4). As the bulk of images will contain no lensing, remov-
ing these quickly from the stream means the project is 20%–
30% more efficient than previous projects without automated re-
tirement. Potential lenses, test subjects with P(L) > 1 × 10−5,
were only retired from the classification stream after 30 classifi-
cations had been made. In general, we did not retire any training
images unless they had artifacts which made their correct clas-
sification ambiguous, or were failed simulations, such as a lens
drawn around no obvious lensing galaxy or on a bright artifact.

5.3. Results of Visual Inspection

Figure 4 shows the score trajectories for a random subset of
training and test subjects in the Space Warps lens search. The
majority of training subjects were accurately classified: most
non-lenses received low scores, while most lenses received high
scores. The vast majority of test subjects received low scores,
indicating they were not lenses, as expected. The crowd’s skill
distribution is shown in Fig. 5. The vast majority of users are lo-
cated in the ‘Astute’ quadrant of user skill, indicating that they
could correctly identify the majority of training subjects, both
lenses and non-lenses. Out of the 114 960 test subjects that were
inspected by citizens, 2799 received a score of p > 1 × 10−5

and were subsequently inspected by experts. We treat citizen and
ML scores independently in this paper; but we refer the reader
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Fig. 4. A random subset of score trajectories for test (grey) and training
subjects (lenses: blue, non-lenses: red) in the Space Warps lens search.
Subject which are voted as lenses (non-lenses) by citizens move towards
the right (left), and users with higher skill can cause larger changes in
score when they classify a subject. The vast majority of training subjects
were correctly classified by the citizens. Subjects reaching the shaded
region were removed from the platform to increase the efficiency of
classification.
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Fig. 5. Distribution of user skills in the Space Warps lens search, based
on their classifications of the training images for which the ground truth
was known. The vast majority of users lie in the ‘Astute’ quadrant, indi-
cating they correctly classified the majority of lens and non-lens training
images.

to Holloway et al. (2024), and Euclid Collaboration: Holloway
et al. (2025) for a detailed consideration of an ensemble of ML
and citizen classifiers.

6. Expert inspection

The galaxies voted by Space Warps volunteers as most likely to
be strong lenses were shown to experts – i.e., professional as-
tronomers – for validation. The visual judgements of our experts

determined which lenses were modelled (Sect. 7) and ultimately
reported in our lens catalogue (Sect. 8.3).

6.1. Expert inspection overview

Our experts were professional astronomers who volunteered
from the Euclid Consortium Strong Lensing Science Working
Group. 61 volunteers made 80 009 annotations of 8132 images3.
Each expert was randomly assigned to annotate an image from
the pool of candidates. Images were removed (‘retired’) once
they received ten expert annotations. This approach prioritises
simplicity over efficiency. Random assignment is also ideal for
managing our large and distributed group of experts.

The pool was initially filled with the top one thousand ML-
identified candidates (see Sect. 4) and continually updated with
new candidates as identified by the Space Warps citizen sci-
entists (see Sect. 5). To understand which lenses our experts
are likely to recover – our expert selection function – we also
showed images painted with simulated strong lenses, selected to
evenly cover a challenging range in Einstein radius and signal-
to-noise ratio (0 .′′5 < θE < 1 .′′2 and 1 < S/N < 200).

Following Acevedo Barroso et al. (2024) and in keeping with
convention, we asked experts to assign each image as either
Grade A (“confident lens: shows clear lensing features, no addi-
tional information is needed”), Grade B (“probable lens: shows
lensing features but additional information is required to verify
that it is a definite lens”), Grade C (“possible lens: shows lensing
features but they can be explained without resorting to gravita-
tional lensing”) or not a lens (X).

We added two extensions to this conventional grading
scheme. First, we introduced the new option Grade A+ (“Confi-
dent lens of individual scientific value, might be worth dedicated
follow-up or a dedicated paper”) to flag rare configurations such
as double source plane lenses (Euclid Collaboration: Li et al.
2025). We expect these to be identified more frequently than
in ground-based surveys thanks to Euclid’s PSF. Second, non-
lenses may be marked as ‘otherwise interesting’ in the hope of
recording unusual galaxies seen while searching for lenses. We
noted that some of our machine learning models (Euclid Collab-
oration: Lines et al. 2025) confused these galaxies with lenses,
likely because they were not represented in the training data for
those models, and hence our search for lenses also functioned as
an accidental search for unusual galaxies in general.

The expert responses were used to calculate the lens score
and lens grade reported in our catalogue (Sect. 8.3) after adjust-
ments to account for the optimism of individual experts (Ap-
pendix B) and to align our grades with previous work (Sect. 8).

6.2. Expert inspection results

Experts inspected 7362 candidates identified by the Discovery
Engine; the 4712 candidates rated in the top 1000 of each of
the five deep learning models (Euclid Collaboration: Lines et al.
2025), and the 2650 candidates ranked most highly (SWAP score
above 1× 10−5) by Space Warps volunteers. Experts also graded
365 ad hoc candidates identified outside our main search; see
Sect. 8.4.

We converted each expert response to a numerical score with
a simple point system, following Cañameras et al. (2020):

3 7727 unique real candidates, after excluding simulated candidates
and duplicates
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Score(response) =


0 for response = X
1 for response = C
2 for response = B
3 for response = A or A+

(5)

We then calculate a final score for each lens by aggregating
these individual scores across the ten experts responding to each
image. This aggregation starts with a simple mean, and then adds
a correction to account for the typical optimism of each expert.
See Appendix B for more details. Where the same lens appears
in overlapping cutouts, we manually select the correctly-centred
cutout and assign the highest aggregate response from any of the
overlapping cutouts.

We suggest that practitioners use the image gallery (Fig. A.1)
to choose a score cut that suits their desired purity. However,
for convenience and by convention, we use score cuts to group
lenses into ‘Grade A’ and ‘Grade B’ candidates. We define Grade
A as candidates with lens score above 2 and Grade B as candi-
dates with lens score above 1.5. We chose these cuts so that our
‘Grade A’ and ‘Grade B’ candidates have a similar visual confi-
dence (roughly, accepting the inherent subjectivity) to the ‘Grade
A’ and ‘Grade B’ candidates reported by previous works.

7. Modelling

7.1. Modelling overview

We perform automated strong lens modelling of the highest
expert-ranked candidates using the Euclid Strong Lens Mod-
elling Pipeline4, adaptated from the lens modelling software
PyAutoLens5 (Nightingale et al. 2021).

The lens mass is modelled as an isothermal profile

κ(ξ) =
1

1 + qmass

(θmass
E

ξ

)
, (6)

where θmass
E is the Einstein radius, qmass is the axis ratio, and ξ

is an elliptical radius measuring the distance to the centre in the
image plane. Deflection angles are calculated using the method
of Kormann et al. (1994) in PyAutoLens. External shear is in-
cluded, parametrised as (γext

1 , γ
ext
2 ), with the shear magnitude and

orientation given by

γext =

√
γext2

1 + γext2
2 , tan 2ϕext =

γext
2

γext
1
. (7)

The deflection angles due to the external shear are computed an-
alytically.

Table 2 outlines our automated lens modelling pipeline. The
pipeline models the lens galaxy’s light using a multi-Gaussian
expansion (MGE, He et al. 2024), accounts for PSF blurring, and
subtracts this model from the observed image. A mass model
(isothermal distribution) ray-traces image pixels to the source
plane, where a pixelized source reconstruction is performed us-
ing an adaptive Delaunay mesh. The pipeline iteratively fits vari-
ous combinations of light, mass, and source models; the pipeline
initially fits a simpler model using an MGE source for efficient
and robust convergence towards accurate results, then subse-
quent stages employ the more complex Voronoi source recon-
struction. The pipeline chains together five lens model fits in to-
tal.
4 github.com/Jammy2211/euclid_strong_lens_modeling_pipeline
5 github.com/Jammy2211/PyAutoLens

Table 2. Pipeline composition used in the analysis built using
PyAutoLens.

Pipeline Component Model Prior info

Source Lens light MGE -

Parametric Lens mass SIE+Shear -

(SP) Source light MGE -

Source Lens light MGE SP (fixed)

Pixelization 1 Lens mass SIE+Shear SP

(SPix1) Source light MPR -

Source Lens light MGE SP (fixed)

Pixelization 2 Lens mass SIE+Shear -

(SPix2) Source light Voronoi -

Mass Lens light MGE SP1

(M) Lens mass SIE SP1

Source light Delaunay SP2

For further description of PyAutoLens, see Appendix C and
references therein, particularly He et al. (2024) and Nightingale
et al. (2024) for full details. A visual step-by-step guide to the
PyAutoLens likelihood function used in this work is available
via Jupyter notebooks.6

7.2. Modelling results

The Euclid Strong Lens Modelling Pipeline was applied to 488
grade A or B lens candidates (i.e. with an expert vetting score
greater than 2.0). The first step assessed whether the automated
modelling was successful, based primarily on how well the
model reproduced the observed lensed source emission. The crit-
ical curves of the mass model and the source plane were also
evaluated. A successful lens model does not necessarily confirm
the candidate as a strong lens but indicates that the model fit the
galaxy image as expected. For instance, if the observed emission
in the image-plane is singly imaged without a counter-image and
the model reflects this, the fit is deemed successful, even though
the candidate is not a strong lens. Overall, 374 out of 488 candi-
dates (77%) were successfully modelled.

Among the 374 successful fits, we evaluated whether the
candidates were genuine strong lenses based on the models. Of
these, 315 were judged as strong lenses, while 59 were judged as
not to be. Notably, only seven of these 59 was initially graded as
a Grade A lens during the first round of visual inspection. This
result highlights the effectiveness of combining machine learn-
ing, citizen science, and expert validation in identifying genuine
strong lenses.

Figure 6 presents example lens models fitted to candidates,
demonstrating how lens modelling can confirm or rule out their
status as strong lenses. The first row shows a case where the
model uncovers a faint counter-image in the data, undetectable
in the IE data before lens subtraction or in the RGB images. This
phenomenon occurs in 60 out of 374 candidates. The second row
provides an example where the model fails to identify a counter-
image for the candidate’s lensed source emission, offering evi-

6 github.com/Jammy2211/autolens_likelihood_function
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Fig. 6. Lens models inferred by applying the Euclid Strong Lens Modelling Pipeline and PyAutoLens to our strong lens candidates. From left
to right, the panels display: (i) the RGB image used during lens finding; (ii) the foreground lens-subtracted image; (iii) the model of the lensed
source; (iv) the source-plane reconstruction on a Delaunay mesh; (v) the foreground lens light model on a log 10 colour scale; and (vi) the SIE
mass model convergence on a log 10 colour scale. Tangential critical curves and caustics are marked with black lines, while radial critical curves
and caustics are indicated with white lines. The first row illustrates how lens modelling confirms a strong lens by revealing a faint counter-image to
a large source arc, which was undetectable through visual inspection of the observed IE or RGB images. In contrast, the second row demonstrates
a case where lens modelling rules out a lens candidate, as the model fails to uncover evidence of a counter-image in the data.

dence that this candidate is not a strong lens (42 out of 59 candi-
dates).

Figure 7 shows the normalised distribution of Einstein radii
recovered in our search. The distribution of radii is in excel-
lent agreement with the expected distribution for lenses in the
Universe as simulated by Collett (2015) and Sonnenfeld et al.
(2023). This suggests that Einstein radius is not a strong selec-
tion effect for θE = 0 .′′6, consistent with the selection function we
estimate independently by injecting simulated lenses (Sect. 8.2).
Further, the agreement between forecasted and recovered radii
provides evidence in favour of the accuracy of both the forecasts
and our search approach.

The distribution comparison with simulated lens populations
suggests a sharp drop in detectability below θE = 0 .′′6 (see also
Acevedo Barroso et al. 2024, using five lenses discovered in the
Euclid ERO). Injections of simulated lens images, however, sug-
gest lenses should still visible down to θE = 0 .′′5. Identifying
the exact lower limit of Euclid’s detection capability will require
further work, and the limit itself may change as we refine7 our
search approach.

7.3. Scaling lens modelling to DR1

Traditional optimisation methods, such as PyAutoLens, are
computationally intensive and often require significant manual
input. While modelling the strong lenses presented in this pa-
per took only a few days, applying the same approach to all
lenses expected from DR1 and the full survey would be infea-
sible. One alternative is differentiable fitting codes (Gu et al.
2022; Stone et al. 2024). These scale traditional lens modelling
using gradient-based sampling on GPU accelerators. Another al-
ternative is neural network lens parameter estimation directly
from the lens images, as in LEMON (Gentile et al. 2023; Euclid
Collaboration: Busillo et al. 2025). LEMON estimates the lens
mass and light parameters, such as the Einstein radius and fore-
ground Sérsic index, and includes uncertainty estimates through

7 If the forecasts are correct in predicting a substantial population of
low θE lenses, a small improvement in the lower detection limit – e.g.,
adding galaxy light subtraction – would lead to a substantial increase in
detected lenses.
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Fig. 7. Distribution of Einstein radii for lens candidates with successful
models (‘Euclid Q1’) compared to the expected Einstein radii of lenses
in simulations of Euclid (Collett 2015; Sonnenfeld et al. 2023). Nor-
malised lens counts, with Q1 normalisation adjusted to match peaks.

its Bayesian framework. Euclid Collaboration: Busillo et al.
(2025) show that LEMON can accurately recover simulated lens
parameters and provides estimates consistent with independent
measurements on Euclidised, Euclid ERO strong lenses, and the
Q1 strong lenses presented here.

8. Overall results

8.1. Discovery Engine search numbers

Below, we summarise the counts from each stage of our search.

1. Sources in Q1: 29 767 644
2. Sources passing selection cuts: 1 086 556
3. Candidates searched by ML: 1 086 554
4. Candidates shown to citizens

(a) ML: 78 214
(b) Random: 40 000
(c) Total (including overlap): 115 329

5. Candidates shown to experts
(a) ML only: 4712
(b) ML then Citizens: 2650
(c) Total: 7362

6. Expert grades
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(a) Grade A: 250
(b) Grade B: 247

7. Modelling of AB candidates
(a) Successful fit, likely lens: 315 of 374
(b) Successful fit, unlikely lens: 59 of 374
(c) Unsuccessful fit, likely lens: 80 (ignoring group scale

lenses, 61)

8.2. Completeness

We used the responses of volunteers and experts to images with
painted lenses (Euclid Collaboration: Lines et al. 2025) to es-
timate completeness with respect to Einstein radii and signal-
to-noise ratio. We find that both volunteers (Fig. 8) and experts
(Fig. 9) can reliably recover bright lenses down to an Einstein
radii of 0 .′′5 (the lowest simulated), likely due to Euclid’s space-
based resolution. Signal-to-noise ratio8 is the key limiting fac-
tor; even for lenses of large Einstein radii, volunteer and expert
responses rapidly drop as the signal-to-noise ratio falls below
approximately 100 (as defined in Euclid Collaboration: Rojas
et al. 2025). Experts generally rate painted lenses of a signal-
to-noise ratio below approximately 30 as Grade C (score below
1.5) or lower. Volunteers are more likely to correctly select these
faint lenses (selection probability of approximately 50%) but are
also more optimistic overall, as we describe below. Fainter arcs
become hard to recognise either because they become indistin-
guishable from background, or are ‘outshone’ by a bright lensing
galaxy. Combining images from deeper surveys (e.g., Melo et al.
2024) may help recover arcs from background, while light sub-
traction or fully-automated methods may be necessary to recover
arcs near bright lensing galaxies.

Figure 10 considers all galaxies rated by both volunteers and
experts, where ‘Volunteer approved’ means galaxies sent for ex-
pert inspection due to having a SWAP score above p > 1× 10−5.
We chose this moderate threshold to include systems ‘worth an
expert look’; not all volunteer-approved systems are expected to
be highly likely candidates. Experts rated the galaxies approved
by volunteers with a broad spread; volunteer-approved galaxies
were generally considered lens-like, but only a minority (26%)
were rated as probable (grade B) to confident (grade A) lenses.
This is expected given the low SWAP threshold. Moving to a
higher SWAP threshold would capture most of the grade A and
grade B candidates with 465 of the 497 having SWAP scores of
P > 0.99. Conversely, 8 of the 497 galaxies graded as A or B by
experts were rejected by the citizens. While volunteer-rejected
subjects would not normally be forwarded to the experts, in the
initial stage of the project, experts and citizens simultaneously
classified the top-scoring 1000 galaxies from each model. Within
that high-ML-scoring subset of galaxies, 7 lens candidates (2
grade A and 5 grade B) were missed by the citizens. This im-
plies a small incompleteness by Space Warps score alone for
high ML score galaxies, but an ensemble analysis would help
recover these (see Euclid Collaboration: Holloway et al. 2025).

How many lenses did we miss by using deep learning models
to pick a subset of galaxies to inspect, rather than inspecting all
one million galaxies? We estimate this through the forty thou-
sand randomly-selected sources shown to citizens, of which 31
were rated as grade B candidates or better. This suggests a base
rate of 0.79 lenses per thousand sources (0.62–0.98 at 10%–90%
confidence). With that base rate, we would expect a complete vi-
sual search of all Q1 sources to find 837 candidates, while our
model-prioritised search ultimately found 500, for a complete-

8 Defined in Sect. 2.5 of Euclid Collaboration: Rojas et al. 2025
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Fig. 8. Selection function of volunteers with respect to Einstein radius
and signal-to-noise estimated by injecting images with painted lenses
from Euclid Collaboration: Rojas et al. (2025). Coloured points show
volunteer responses to painted lenses (after SWAP aggregation). Con-
tours show the estimated probability of a lens being selected. Euclid’s
resolution allows us to recover lenses down to Einstein radii below 0 .′′5
(the lowest simulated). Signal-to-noise is the key limiting factor.
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Fig. 9. As in Fig. 8, for experts. Colours and contours show the actual
and estimated scores given by experts to painted lenses. In this work we
consider a score above 1.5 as Grade B and 2.0 as Grade A.

ness estimate of 60%. Alternatively, our models correctly priori-
tised 21 of the 31 strong lens candidates, implying a complete-
ness of 66%. Figure 11 shows each posterior estimate for the
completeness of our deep learning search. Understanding which
lenses are missed by all models will be a major focus for DR1
and beyond.

8.3. Lens catalogue and derived data products

Our data are publicly released on Zenodo9. This includes our
lens catalogue and our lens modelling results. We also share
the underlying FITS cutouts to support further modelling work
or follow-up proposals. Extensive documentation is available at
that link. We summarize the presentation of the catalogue below.
9 https://doi.org/10.5281/zenodo.15003116
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Fig. 11. Posteriors for the completeness of our deep learning search.
Of all the lenses that a full citizen inspection of the one million Q1
galaxies would have revealed, how many did our deep learning models
correctly prioritise? Each of our two methods – the base rate of lenses
found randomly, and the fraction of random lenses correctly prioritised
– imply a completeness (compared to the number of lenses that would
be found from exhaustive inspection) of around 60%.

The catalogue columns are ordered and grouped by theme.
The identification group shares the sky coordinates the and Eu-
clid source catalogue keys (e.g., the tile index). The rating group
shares the Galaxy Judges score and suggested grade. The mod-
elling quality group shares our interpretation of the modelling
results (e.g., if the model is consistent with a strong lens, if
a counter-image was revealed, etc.). The modelling lens mass
group shares columns relating to the lens mass (e.g., the Ein-
stein radius). The remaining modelling results columns share
additional modelling results (e.g., the signal-to-noise ratio, the
lens magnification, etc.). Each modelling result is reported as a
median value, plus upper and lower limits at 1σ and 3σ.

In addition to our 250 Grade A candidates and 247 Grade
B candidates, we also include 585 candidates with expert scores
above 1.0, and define these as Grade C candidates to indicate
lens-like galaxies that are possible lenses but not persuasively
so. We do not count these as lens candidates elsewhere in this
work or in other papers in this series.

8.4. Additional lens candidates

8.4.1. Candidates independently identified

Some candidates independently identified by our Discovery En-
gine were also found from other searches of Euclid data. We list
these candidates in our main catalogue, with metadata (e.g., the
‘subset’ column) noting their related discovery. This ensures our
selection function is not affected by other searches.

O’Riordan et al. (2025) reports the discovery of a complete
Einstein ring in NGC6505, found serendipitously during Euclid
Performance Verification observations aimed at measuring ice
contamination. Our Discovery Engine would have found this
lens; the Zoobot model ranks it 332nd of 1.08M (top 0.03%),
high enough to be sent directly for expert grading, and experts
assigned it the highest grade of any candidate (eight grades of
‘A+’ and 2 grades of ‘A’).

Euclid Collaboration: Rojas et al. (2025) used spectroscopic
data to identify high-velocity-dispersion galaxies with Euclid
imaging. They then carried out an expert inspection campaign
to grade those galaxies and identify strong lens candidates. Six-
teen grade A and twelve grade B candidates (our scores) in this
work were also identified in this targeted search. Only two candi-
dates were rejected by our search (one was not prioritised by our
machine learning models and two were rejected by Space Warps
volunteers). The remaining difference in our samples (10 candi-
dates) is due a difference in selection cuts, primarily rejections
by our Gaia cut described below.

Pearson et. al. (in prep.) asked Galaxy Zoo volunteers to flag
strong lenses in HSC images, first as part of the broader pro-
cess of annotating morphology and then in a targeted project on
Galaxy Zoo Mobile. We were provided this list of candidates
at the start of our search. All grade A and B candidates were
successfully independently identified by the Discovery Engine
(likely because the HSC-selected candidates were visually obvi-
ous in Euclid imaging).

Ecker et. al (in prep.) is carrying out a dedicated search for
low-redshift lenses in Q1. Comparison with this search revealed
that our choice to reject Gaia catalog sources was a convenient
method to avoid stars (the vast majority of Gaia sources) but also
excludes some bright low-redshift galaxies which may be lenses.
We will alter our star rejection approach for DR1.

8.4.2. Candidates Not Identified

Some candidates were not identified by our Discovery Engine
(e.g., due to selection cuts) but were found during the course
of this project (e.g., serendipitously) and may be helpful to the
community. We have graded these additional candidates through
the same expert vetting (Sect. 6) process. We include them a
secondary table of candidates and do not otherwise include them
in the numbers reported in this work.

Galaxy Zoo Euclid (Euclid Collaboration: Walmsley et al.
2025) asked citizen science volunteers to label galaxy morphol-
ogy (bars, spirals, etc.) in Euclid images (outside Q1). Volun-
teers had the option to flag possible lenses, either as part of
a final multiple-choice question or via free text ‘tags’ on the
Galaxy Zoo forum. Between August and December 2024, vol-
unteers flagged 814 possible candidates from 140k images. We
requested expert vetting and ultimately identify 56 Grade A and
19 Grade B candidates.

The remaining three additional lens candidates were dis-
covered serendipitously by members of the Euclid Consortium.
These are useful for revealing lenses missed by our engine. One
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candidate was missed by the deep learning models; the model
that ranked it highest gave a rank of seventy thousand, which
compares well with one million total sources but fell well be-
low our citizen inspection cutoff (20k). We expect that our deep
learning search is around 70% complete (Fig. 11). Updating our
models, most straightforwardly by retraining on the lenses found
so far, will likely improve our completeness and purity, but –
given Euclid’s scale – we consider our current models as already
sufficient to find unprecedented numbers of lenses (see Euclid
Collaboration: Lines et al. 2025 and Sect. 9) Two candidates
were rejected by citizen scientists, both ‘understandably’; one
has a faint arc that is difficult to quickly identify, and the other
was substantially off-centre. The off-centre example highlights
how detailed modelling of a real lens search selection function
involves more than just commonly-considered astrophysical pa-
rameters like Einstein radius and signal-to-noise ratio.

9. Conclusion and discussion

Euclid is an unparalleled instrument for finding strong gravita-
tional lenses. We present a catalogue of strong lenses in Q1 – the
first core survey data from Euclid. We identified these lenses by
combining spectroscopy, deep learning, citizen science, expert
inspection, and lens modelling – our ‘Discovery Engine’.

Euclid Collaboration: Rojas et al. (2025) created an initial
training set for our deep learning models by using spectroscopy
to identify new lenses. Our five deep learning models, described
in Euclid Collaboration: Lines et al. (2025), then ranked one mil-
lion Q1 galaxies. The best-performing model, Zoobot, identified
163 lens candidates in the top 1000 galaxies. 1800 volunteers
from the Space Warps citizen science project (Sect. 5) searched
the highest-ranked 78 000 galaxies, and also searched 40 000
random galaxies to robustly estimate Euclid’s lens-finding ca-
pability. 61 professional astronomers then vetted 7500 galaxies
selected by the models and volunteers. This revealed four new
double-source-plane lenses, investigated in detail in Euclid Col-
laboration: Li et al. (2025), as well as complete Einstein rings,
quadruply-imaged lenses, and edge-on lensing galaxies.

We ultimately find 500 lens candidates, comparable to the
most successful search campaigns (e.g., Jacobs et al. 2019;
Schuldt et al. 2025a; González et al. 2025) while searching
only 63 deg2 in approximately six weeks. Euclid Collaboration:
Holloway et al. (2025) forecasts that even without further im-
provement applying our current classifiers to Euclid DR1 would
yield 3900 to 7600 grade A and B lens candidates when using
Bayesian ensembling. Each of these outcomes finds more lens
candidates than all previous searches combined – we are only
unsure by how much.

The forecast uncertainty follows in part from the visual in-
spection budget of both citizens and experts; the conservative
forecast assumes citizens inspect 100 000 galaxies and experts
inspect 5000 galaxies (as in this work), and the optimistic fore-
cast assumes one million galaxies by citizens and 15 000 galax-
ies by experts. While large, this is a small fraction of the roughly
36 million DR1 sources. Better prioritization could improve lens
counts beyond the optimistic forecast, increasing towards the
30 000 lens candidates we predict to be visually detectable in
DR1.10

How can we prioritise better? Integrating known strategies
could immediately help for DR1. For the deep learning stage,
we could retrain our models using our 900 000 newly-collected
human annotations of real Euclid images. For the citizen stage,

10 Trivially applying our base rate estimate (Sect. 8.2)

a refinement stage asking citizens to look again at the best can-
didates would improve our purity (Marshall et al. 2016). For the
expert stage, applying SWAP – as already done with citizens –
should increase efficiency by several times.

More broadly, visual searches – whether directly by humans,
or indirectly by models trained on humans – have fundamental
limits. The rapid drop in completeness for fainter lenses (Sect.
8.2), combined with the faint counter-images revealed only ret-
rospectively by lens modelling (Sect. 7) suggests that there is an
opportunity to find otherwise-undetectable lenses through auto-
mated techniques. Differentiable lens simulators (Gu et al. 2022;
Stone et al. 2024) are one possibility. We may also see hybrid ap-
proaches such as using full-survey light subtraction (e.g., Lang
et al. 2016) to present cleaned visual images.

The clear visual lensing features resolved by Euclid, the
successful lens model fits, and the consistency with previous
forecasts all suggest the bulk of our candidates are genuine
lenses. However, definitive identification will require refined
modelling and ultimately large-scale spectroscopy. 4MOST’s
planned strong lensing survey (Collett et al. 2023) aims to mea-
sure redshifts for 10 000 lensing pairs, which – as this work
shows – Euclid will comfortably provide.

This first catalogue from Euclid’s main surveys opens a new
era of strong lensing science. Within the next two years, Euclid’s
lens discoveries will expand to dwarf all previous searches com-
bined. We hope that the release of our catalogue will allow the
community to begin using these lenses to better understand our
Universe.
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Appendix A: Strong lens gallery

Figure A.1 shows our lens candidates (random subset for conciseness) ordered by expert visual inspection score. Use this to choose
your own score cuts.

Appendix B: Calibrating For individual expert optimism

Individual experts can disagree on strong lens grades. A common explanation for part of this disagreement is that experts can be, on
average, more optimistic or more conservative (Rojas et al. 2023). We introduce a simple re-weighting technique to account for any
systematic offset in optimism between experts. In practice, we find this has a minimal effect on our aggregate grades, likely because
we ask ten experts for every galaxy and so any offsets are largely averaged out. We report our rebalancing here for completeness.

We calculate our calibration by aggregating over all galaxies seen by one expert. The intuition is that for the set of galaxies seen
by each expert, their mean grade should be the same as the mean of the grades from all other experts for that same set of galaxies.
For example, if I see three galaxies and grade them all as A (score of 3.0), but the mean grade for those galaxies from all other
experts is B (score of 2.0), one should discount my scores by 1.0 to account for my overall optimism. Repeating this calculation
individually for all experts provides a calibration such that the optimism of every expert is accounted for. Figure B.1 shows the
result.

Appendix C: Lens modelling pipeline

Appendix C.1: Data preprocessing

Before lens modelling, several preprocessing steps are required, streamlined to enable scalability for large lens samples:

– Mask: A 5 .′′0 circular mask is applied to every imaging dataset, limiting the fit to pixels within this radius. Using a fixed radius
for all candidates eliminates human input, enabling scalability to large lens samples.

– Contaminant removal: Emission from nearby line-of-sight galaxies within the mask can interfere with the model. A GUI is
used to manually ‘spray-paint’ these regions, replacing them with random Gaussian noise and increasing the RMS noise map to
ensure the model ignores them. This method, commonly used in lens modelling (e.g., Etherington et al. 2022; Nightingale et al.
2024), takes approximately ten seconds per lens and will require future automation for scalability to thousands of candidates.

– Multiple image positions: Previous studies input (x, y) coordinates of multiple lensed images, enforcing that the mass model
maps them within a threshold (e.g., 0 .′′1) in the source plane. This manual step (about ten seconds per lens) is omitted in the
Euclid pipeline. Instead, after the first lens model fit, a lens equation solver automatically computes these positions for use in
subsequent fits, enabling full automation.

Appendix C.2: Fitting

The initial stage of the pipeline uses an MGE source model, which is efficient and flexible with only one set of 30 Gaussians spanning
σ values from 0 .′′001 to 1 .′′0. As discussed in H24, the MGE source model is effective for automated lens modeling because it can fit
the data is a highly flexible way whilst retaining a relatively low number of non-linear free parameters. For the source, we use only
one set of 30 Gaussians, whose σ values span log 10 increments from 0 .′′001 to 1 .′′0. The MGE’s assumption of symmetry limits
its ability to model complex high-redshift source morphologies. Later stages use an adaptive Delaunay mesh for irregular sources,
employing bilinear interpolation and cross-regularization from H24. Details of the linear algebra, interpolation, and regularization
are in Nightingale et al. (2024) and H24.

The pipeline performs five chained fits, the first two and final two use the nested sampler nautilus11 (Lange 2023) and the
third stage uses the nested sampler dynesty (Speagle 2020). The pipeline is the ‘Source’ and ‘Mass’ pipelines of the PyAutoLens
SLaM (Source, Light, and Mass) pipelines used by various other studies (e.g., Etherington et al. 2022; Cao et al. 2022; He et al.
2023; Nightingale et al. 2023, 2024).

All pipeline stages decompose the lens light into 2D elliptical Gaussians using Cappellari (2002)’s MGE framework, imple-
mented in the semi-linear inversion method (Warren & Dye 2003) using a fast non-negative least-square (fnnls) algorithm which
enforces positivity on the solution. Gaussians are grouped into two sets of 30 Gaussians which share the same centres, position
angles, axis ratios, and their σ values are fixed to preset values which evenly increase in log 10-spaced intervals between 0 .′′02 and
5 .′′0. The implementation is described fully in He et al. (2024).

Appendix D: Data availability

All data underlying this article is available on Zenodo at https://doi.org/10.5281/zenodo.15003116. This article builds on
data released during Euclid Quick Release 1, available from Euclid Collaboration: Aussel et al. (2025).

11 https://github.com/johannesulf/nautilus
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Fig. A.1. Strong lens candidates as a function of expert visual inspection score. Random subset shown for conciseness (140 of 500). We refer to
a score above 2.0 as Grade A and above 1.5 as Grade B in this work, but suggest that readers choose their own selection cut according to their
science goals.
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Fig. B.1. Removing systematic offsets in grading optimism between experts. Each mark is an expert. The x-axis shows the mean score of an expert
for all the galaxies they graded. The y-axis shows the mean score of all other experts over the same set of galaxies. In blue is the original scores,
and in orange is the same calculation after reweighting (matching the individual mean with the group mean). The range in mean scores (both axes,
before and after reweighting) is due to experts joining the grading project at different times and seeing a different balance of galaxies.

Article number, page 20 of 20


	Introduction
	 Design motivation
	 Data
	 Machine learning overview
	 Citizen science overview
	Approach
	Aggregation
	Results of Visual Inspection

	 Expert inspection
	Expert inspection overview
	Expert inspection results

	 Modelling
	Modelling overview
	Modelling results
	Scaling lens modelling to DR1

	 Overall results
	Discovery Engine search numbers
	Completeness
	 Lens catalogue and derived data products
	 Additional lens candidates
	Candidates independently identified
	Candidates Not Identified


	 Conclusion and discussion
	Strong lens gallery
	Calibrating For individual expert optimism
	Lens modelling pipeline
	Data preprocessing
	Fitting

	 Data availability

