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ABSTRACT

Red quasars constitute an important but elusive phase in the evolution of supermassive black holes, where dust obscuration can significantly
alter their observed properties. They have broad emission lines, like other quasars, but their optical continuum emission is significantly reddened,
which is why they were traditionally identified based on near- and mid-infrared selection criteria. This work showcases the capability of the
Euclid space telescope to find a large sample of red quasars, using Euclid near infrared (NIR) photometry. We first conduct a forecast analysis,
comparing a synthetic catalogue of red QSOs with COSMOS2020. Using template fitting, we reconstruct Euclid-like photometry for the COSMOS
sources and identify a sample of candidates in a multidimensional colour-colour space achieving 98% completeness for mock red QSOs with 30%
contaminants. To refine our selection function, we implement a probabilistic Random Forest classifier, and use UMAP visualisation to disentangle
non-linear features in colour-space, reaching 98% completeness and 88% purity. A preliminary analysis of the candidates in the Euclid Deep Field
Fornax (EDF-F) shows that, compared to VISTA+DECAm-based colour selection criteria, Euclid ’s superior depth, resolution and optical-to-NIR
coverage improves the identification of the reddest, most obscured sources. Notably, the Euclid exquisite resolution in the IE filter unveils the
presence of a candidate dual quasar system, highlighting the potential for this mission to contribute to future studies on the population of dual
AGN. The resulting catalogue of candidates, including more the 150 000 sources, provides a first census of red quasars in Euclid Q1 and sets the
groundwork for future studies in the Euclid Wide Survey (EWS), including spectral follow-up analyses and host morphology characterisation.

Key words. Galaxies: evolution, active; quasars: general, supermassive black holes; Methods: statistical, numerical.

1. Introduction

Supermassive black holes (MBH > 106 M⊙) and their host galax-
ies are believed to grow in tandem, as postulated by theoreti-
cal (e.g., Silk & Rees 1998) and observational (e.g., Magorrian
et al. 1998) arguments. At the same time, early galaxy evolution5
simulations showed that in order to reproduce observed galaxy
size and brightness distributions, as well as their star formation,
some form of energetic feedback from the central black hole is
required (Bower et al. 2006; Croton 2006). Black holes can influ-
ence their host galaxies through the release of gravitational po-10
tential energy in the form of radiation during their active phase of
accretion of matter, also known as active galactic nuclei (AGN).
In addition, some AGN are known to power energetic jets and
winds which extend their influence on their host galaxy. There-
fore, AGN hold the missing piece to advance our knowledge of15
the black hole-galaxy co-evolution (Fabian 2012; Heckman &
Best 2014).

The lack of a detailed theory of AGN feedback leads to unre-
alistic models, failing to capture the observed complexity of the
AGN population. For example, models do not reliably predict the20
ratio of unobscured (type 1; face-on view of the accretion disc)
to obscured (type 2; edge-on view of the accretion disc and ob-
scuring torus) AGN, nor the evolution of their luminosity func-
tion. Habouzit et al. (2021) presented six current state-of-the-art
galaxy evolution simulations compared to the number density of25
AGN derived from X-ray observations. Even though these mod-
els are successful in predicting the observed properties of normal
galaxies, none of them predicts reliably the history of supermas-
sive black hole growth and the corresponding AGN phase. Thus,
the creation of an AGN activity model rooted in observations is30
needed to act as ground truth for galaxy evolution simulations
and to motivate the prescription of stochastic processes in sub-
grid physics.

The most significant challenge in AGN studies is that each
part of the electromagnetic spectrum captures a different aspect35
of the central engine, leading to major inconsistencies between
detection methods (Padovani et al. 2017). This is particularly

⋆ e-mail: federica.tarsitano@unige.ch

true for the obscured AGN population, nowadays suspected to
also be a phase during the evolution of an AGN, and not only
an outcome of a geometric alignment of the disc/torus system 40
towards the observer.

The unification scenario (Antonucci 1993; Urry & Padovani
1995) postulated that the observed variety in the presence of
broad and narrow emission lines in the spectra of active galaxies
was due to the obscuration induced by a molecular torus along 45
the line of the sight of the observer. The distinction between
AGN and quasars is largely a description of the relative lumi-
nosity of the central engine and the host galaxy, with quasars
being extremely luminous and dominating over the host galaxy
emission. The definition of red quasars corresponds to sources 50
that show broad lines (i.e. type 1 sources) but with significant
absorption in their continuum (Glikman et al. 2012; Banerji et al.
2013). Red quasars seem to contradict the AGN unification sce-
nario, as first Klindt et al. (2019) and more recently Andonie
et al. (2022), Fawcett et al. (2023); Petley et al. (2024); Cal- 55
istro Rivera et al. (2024) and Yue et al. (2024), showed evidence
of enhanced radio detection rates from this population, at odds
with a simple orientation-induced obscuration. Current models
and several observations argue that red quasars could be an ini-
tial, short-lived stage during the onset of quasar activity within 60
a galaxy. As the gas and dust is driven into the centre of the
galaxy, the initial phase of accretion is enshrouded in a dusty co-
coon. Subsequently, the radiation pressure, and induced winds
will clear out the region around the black hole revealing a type 1,
unobscured blue quasar (Urrutia et al. 2009; Banerji et al. 2012, 65
2015; Temple et al. 2019; Calistro Rivera et al. 2021).

Determining the physical parameters of quasars and AGN
and contrasting them with inactive galaxies (i.e., non-AGN
hosts) as a function of luminosity, stellar mass, star formation
rate, obscuration, as well as across cosmic time and large-scale 70
environment is crucial (e.g., Wethers et al. 2018), Laloux et al.,
in prep. It will enable the creation of an evolutionary scenario
for galaxies including the incidence of AGN, which is much
needed to establish the true evolutionary path of quasars and to
inform the recipes used in simulations. However, AGN are short- 75
lived phenomena and detailed statistical studies of this popula-
tion have been hindered by the size of the available datasets.
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The value of large AGN and quasar samples is not only in
the accurate determination of AGN luminosity distribution func-
tions but also in allowing for detailed decomposition into AGN80
sub-populations. A recent decomposition of about ∼ 150 mid-
infrared detected AGN, split into unobscured, red quasars, and
type 2 sources, shows the luminosity distribution functions to
be a double-power law form with a break at a characteristic lu-
minosity (Glikman et al. 2018). Similar distributions are found85
also in other wavelengths (e.g., Fotopoulou et al. 2016). Much
larger samples are needed to draw definitive conclusions, how-
ever these studies show already differences in the number density
of red and blue quasars, or type 1 and type 2 quasars between low
and high redshift (z ∼ 1).90

Euclid is a mission of the European Space Agency (ESA),
expected to detect billions of sources in the optical and near-
infrared (Laureijs et al. 2011; Euclid Collaboration: Mellier et al.
2024). The Euclid observational campaign will observe a third
of the extra-Galactic sky through two surveys. The Euclid Wide95
Survey (EWS), covering more than ∼ 14 000 deg2, and the Eu-
clid Deep Survey (EDS), focusing on three different areas for
a total of 63.1 deg2. With its unprecedented, large dataset, Eu-
clid offers the possibility to study and identify the largest sample
to date of unobscured and obscured AGN across all wavebands,100
extending to the faintest sources. A key aspect will be the deter-
mination of a corresponding selection function, which remains
under ongoing development, particularly in the context of AGN
studies. This paper presents a study on red quasars within the
Euclid Quick Release Q1 (2025), comparing mock and observed105
sources, and discussing and refining colour selection criteria that
will be functional for the EWS.

2. Dataset

In the forecast analysis, we study the separation between mock
red QSOs and observed sources. We use a synthetic catalogue110
for the former (more information follows in Sect. 2.2) and the
COSMOS2020 dataset (Weaver et al. 2022) for the latter. Mock
red quasars are described over a range of wavelengths extend-
ing from the optical through the near infrared (NIR), and up
to the mid-infrared (MIR): DECam g, r, i, z in the optical (Dark115
Energy Survey Collaboration et al. 2016), Euclid VIS (IE) and
NISP YE, JE, HE in NIR (Euclid Collaboration: Cropper et al.
2024; Euclid Collaboration: Jahnke et al. 2024; Euclid Collabo-
ration: Schirmer et al. 2022), VISTA J,H,Ks from NIR to MIR
(McCracken et al. 2012) and WISE W1,W2 in MIR (Wright120
et al. 2010). The collection of filters used in this work and their
weighted central wavelengths is shown in Fig. 1. The employed
photometry is expressed in the AB magnitude system.

We clean the COSMOS2020 sample from corrupted pho-
tometry and fake detections, and exclude the objects with125
null entries for the photometric redshift. We apply the mask
FLAG_COMBINED = 0 to remove objects near bright stars and sat-
urated regions, ACS_MU_CLASS = 1 to separate stars from galax-
ies, and lp_type , 9 to exclude fake detections. Furthermore,
we apply a magnitude upper cut at 23.5 in VISTA H in both130
COSMOS2020 and the mocks. Among the selected sources in
the COSMOS2020 catalogue, we take into account those that
are flagged as AGN candidates. The selected catalogue includes
95 052 objects.

Additionally, we keep track of 1493 X-ray sources observed135
with Chandra (Civano et al. 2016), which we do not consider
in this analysis. X-ray-selected AGN outline a broad range of
obscuration, and their optical-to-NIR colours may not fully align
with the selection criteria used in this study, based solely on red

Table 1. Sample selection function applied to the Q1 sample. In
FLUX_filter_nFWHM_APER, filter is the passband and n = 1, 2, 3, 4
according to the aperture.

Feature in Euclid Q1 Selected values
PHZ_CLASSIFICATION [2,6]
PHZ_MEDIAN finite
SPURIOUS_FLAG 0
DET_QUALITY_FLAG < 8
FLUX_filter_2FWHM_APER > 0

QSO NIR photometry. We will address this additional level of 140
complexity in future work, using their properties to refine the
distinction between reddened AGN and red galaxies.

We analyse mocks and COSMOS2020 (methods are de-
scribed in Sect. 3) to derive a selection function for candidate
red QSOs, and we apply it to Euclid Q1 (Euclid Collaboration: 145
Mellier et al. 2024). Q1 consists of a first visit of the Euclid
Deep Fields (EDFs), spanning across a total area of 63.1 deg2

of the extragalactic sky, divided in the Euclid Deep Field North
(EDF-N, 20 deg2), Euclid Deep Field Fornax (EDF-F, 10 deg2)
and the Euclid Deep Field South (EDF-S, 23 deg2). More details 150
about the Q1 release are presented in Euclid Collaboration: Aus-
sel et al. (2025); Euclid Collaboration: McCracken et al. (2025);
Euclid Collaboration: Polenta et al. (2025) and Euclid Collabo-
ration: Romelli et al. (2025).

In this work, we focus on the EDF-F, for which we find over- 155
lap with a collection of AGN candidates from Zou et al. (2022),
selected through the flag flag_IRagn_D12, which follows the
MIR colour-based cut proposed in Donley et al. (2012), and a
catalogue of radio-selected quasars (Miller et al. 2013). These
two datasets serve as control samples. We build a first dataset of 160
5 301 332 EDF-F sources, obtained by matching the Euclid mor-
phology (Euclid Collaboration: Romelli et al. 2025) and photo-
metric redshift (Euclid Collaboration: Tucci et al. 2025a,b) cat-
alogues, delivered by the OU-MER and OU-PHZ organizational
units, respectively. Then we exclude objects flagged as spurious 165
and with unphysical photometric and redshift properties. Fur-
thermore, we consider only sources classified either as galaxies
or QSOs, according to the OU-PHZ classification presented in
Euclid Collaboration: Tucci et al. (2025b). A summary of this
selection function is reported in Table 1. Additionally, we apply 170
a cut near the limiting magnitude of the HE band, corresponding
to 23.5. The final subsample at play counts 1 331 325 sources.

2.1. Template fitting

Each object in COSMOS2020 is described by a photometric
dataset including ultraviolet (UV) measures from GALEX, opti- 175
cal observations from the Subaru Hyper Suprime-Cam (HSC)
and the Canada-France-Hawaii Telescope (CFHT), NIR data
from VISTA, MIR from the SPLASH program of the Spitzer
Space Telescope Space Telescope, and optical medium band ob-
servations from Subaru. We refer to Weaver et al. (2022) for ref- 180
erences on these individual datasets. The properties of each filter
are described in Table A.1.

The mock dataset includes VISTA, DECam, and Euclid VIS
and NISP photometry. In order to match the photometric datasets
of mocks and COSMOS2020, we use template fitting (TF) to es- 185
timate the optical and NIR fluxes that are originally not available
in the latter. TF compares the input photometric dataset with a
library of Spectral Energy Distributions (SEDs) to identify the
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Fig. 1. Set of passbands describing the properties of mock red quasars. The panels show the transmission efficiencies for the broad-band optical
DECam griz filters, the Euclid VIS (optical) and NISP (NIR) filters, and the NIR to MIR VISTA JHKs filters. The vertical dashed lines are placed
at the weighted central wavelength of each filter.

best match. For this task we use the Phosphoros package (Pal-
tani et al., in prep). Phosphoros is a fully Bayesian TF algo-190
rithm, supporting flexible prior distributions across all param-
eters (redshift, reddening, SED-index and luminosity) and pro-
ducing multi-dimensional and marginalized posterior distribu-
tions. It was successfully employed in the Euclid photo-z chal-
lenge, presented in Euclid Collaboration: Desprez et al. (2020),195
which was designed to evaluate the accuracy of various methods
for photometric redshift estimation against the stringent require-
ments of Euclid cosmic shear analyses (Cropper et al. 2013, Tar-
sitano et al., in prep.). In Desprez et al. (2023), Phosphoroswas
validated and benchmarked against a similar code, Le Phare200
(Arnouts & Ilbert 2011). For each input galaxy, Phosphoros
provides a multivariate posterior distribution, allowing the in-
ference of flux estimates in the missing bands from the best fit.
For additional details about its metrics and models we refer the
reader to Desprez et al. (2023) and Euclid Collaboration: Tucci205
et al. (2025b).

2.2. Mock red QSO catalogue

A sample of SDSS QSOs was selected across redshift and
grouped into nine bins of FWHM and equivalent width. Stitching
together the stacked spectra, we created a composite spectrum210
with very broad wavelength coverage.

Figure 2 shows the unobscured QSO spectrum and the dra-
matic impact of E(B − V) = 0.25 attenuation applied to it. The
coloured bars correspond to the rest-frame wavelength coverage
of the red-grism of Euclid. To create a mock catalogue of red215
QSOs, we used the first bin of the stacked QSO spectra of Eu-
clid Collaboration: Lusso et al. (2024) and the luminosity func-
tion of red QSO determined in Glikman et al. (2018). The latter
is described by a double power-law function, already presented
in Lacy et al. (2015), characterised by a faint-end and a right-end220
slope, and a break luminosity, where the dominance shifts from
the faint to the bright end.

We created a grid of bolometric luminosity (40 <
log10 Lbol < 50) and redshift (0 < z < 8), and calculated the ex-
pected number of red QSOs by integrating the luminosity func-225

tion. For each mock SED, we applied reddening according to
their distribution covering 0.25 < E(B−V) < 1.45, and assuming
the Prevot attenuation law and intergalactic medium attenuation
as described in Euclid Collaboration: Lusso et al. (2024).

Finally, we applied an observed magnitude cut correspond- 230
ing to the expected depth of EWS, i.e. J < 24.5. Figure 3 shows
the coverage of the luminosity-redshift plane of our mock cata-
logue, assuming 14 500 deg2 sky coverage, at the wide-depth of
Euclid. The black line shows the break luminosity of red QSOs
from Glikman et al. (2018). 235

3. Methods

Colour-based selection criteria have been extensively studied in
literature to identify AGN and reddened AGN. Most notably,
Lacy et al. (2004), Stern et al. (2005), Mateos et al. (2012) and
Assef et al. (2018) defined empirical cuts in MIR colour space. 240
Alongside MIR-based selections, NIR colours have been pro-
posed in Banerji et al. (2012) and Glikman et al. (2012, 2013,
2018), to separate red quasars from stars and galaxies.

To follow-up on these studies exploiting the unique depth
and high-resolution of Euclid, we introduce a novel selection 245
method that is solely based on Euclid NIR photometry. Our goal
is to enhance the systematic identification of red QSOs in the
EWS where MIR photometry may be incomplete or unavailable.

To achieve this, we conduct a series of statistical analyses
to study the photometric selection criteria that maximise the 250
distance between the COSMOS2020 observed dataset and the
mock red QSOs. In particular, we explore the separation in a
multi-dimensional colour-colour space, as a function of magni-
tude and redshift. Our study is performed independently using
VISTA+DECam and reconstructed Euclid photometry. This al- 255
lows us to assess the impact of different wavelength coverage
and filter sets on the identification of red QSOs, and to evaluate
the Euclid NIR stand-alone capability in recovering our target
population.

First, we collect features that are directly transferable into 260
the reconstructed Euclid-like photometry. More precisely, we
consider VISTA J − Ks, Y − Ks and J − H to describe NIR
colours, and DECam i − Ks to sharpen the selection of reddened
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Fig. 3. Luminosity-redshift plane for the mock sample of red QSO.
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(2018).

sources based on their optical-to-NIR transition. In the Euclid-
like colour space, we use YE − HE, JE − HE, and YE − JE as NIR265
colours, and we adopt IE −HE as a metric to estimate the optical-
to-NIR excess. We proceed with the implementation of a multi-
step analysis:

i Principal Component Analysis (PCA): this method has been
successfully applied in previous studies to investigate the un-270
derlying physical properties of AGN and their host galax-
ies. Boroson & Green (1992) were the first to use it in the
AGN domain, to analyse optical emission-lines and contin-
uum properties of a low-redshift quasar sample. Their work
was followed by Corbin (1993), Laor et al. (1994, 1997),275
Wang et al. (1996), and Brandt & Boller (1998). Their anal-
yses found correlation between the primary eigenvector (or
principal component) and quasar spectral features depending
on physical parameters including Eddington ratio, luminos-
ity and black hole spin. Beyond optical emission lines, PCA280

has been applied to AGN spectral energy distributions and
photometric datasets. Yip et al. (2004) applied PCA on SDSS
quasar spectra, and showed that the eigenvectors (named
eigenspectra in their work) have the power of disentangling
the contribution of the host galaxy light, the optical con- 285
tinuum and the AGN emission. Kuraszkiewicz et al. (2009)
analysed a sample of red 2MASS AGN (Cutri et al. 2002).
Among their results, they found that the second principal
component was correlated with optical-to-infrared colours
(B− Ks, B− R, J − Ks), depending on the contribution of the 290
host galaxy relative to the AGN emission. PCA was used to
study AGN samples also in Hao et al. (2005), Stern & Laor
(2012), Panda & Śniegowska (2024).
In this work, we apply PCA to the aforementioned multi-
dimensional colour space to identify the most informative 295
colours that separate mock red QSOs from the observed
COSMOS2020 sources. Our analysis focuses on broadband
photometric selection in preparation for systematic large-
scale red QSO searches in the Euclid Survey. Through linear
combination of the original features, PCA reduces dimen- 300
sionality while capturing variance in the dataset. It serves
as an exploratory framework to highlight which optical and
NIR colours contribute the most to the identification of red
QSOs. Detailed information follows in Sect. 3.1.

ii Empirical colour-colour cuts: using the most significant 305
colours identified via PCA, we study a colour-colour selec-
tion function for red QSOs. Additional information on the
metric adopted to evaluate the selection performance is re-
ported in Sect. 3.2.

iii Machine learning-based refinement: in this phase, we train 310
a probabilistic Random Forest classifier (RF, Breiman 2001)
to refine the previous selection function for red QSOs and
mitigate the effects of contaminants. RF has the advantage of
handling non-linear relationships between the input features,
so it sets complex decision boundaries that PCA and empir- 315
ical colour-based cuts cannot capture. The trained RF model
is then applied to the Euclid Q1 dataset, where we select can-
didate red QSOs based on their predicted probabilities. We
refer the readers to Sect. 3.3 for a detailed description of this
method. 320
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In the analysis, we consider the discriminating power of ad-
ditional features, such as compactness criteria, and we use ex-
ternal AGN datasets as control samples. The latter play a crucial
role in identifying the proposed selection function and assess-
ing its robustness, or revealing the risk of introducing a bias that325
could reduce the completeness of the red quasar selection. We
use our findings to build a first census of candidate red QSOs
in Euclid Q1 EDF-F. Such a sample provides a framework for
future spectral analyses and will serve as a training set for Artifi-
cial Intelligence-based automated classification, extended to the330
EDF-N, EDF-S, and the EWS.

3.1. Hyper-colour determination and colour selection

Principal Component Analysis (PCA) is a statistical method
that can be used to project a dataset from a high-dimensional
space into a low-dimensional space, retaining its most meaning-335
ful properties. More precisely, the technique consists of mapping
the original features into a new set of uncorrelated ones, named
principal components. The result is a linear combination where
each coefficient represents the contribution of the correspond-
ing original feature in forming a principal component. With this340
technique, the dataset is linearly transformed onto a new coordi-
nate system whose directions, the principal components, capture
as much variance in the data as possible, with the first compo-
nent capturing the most variance, the second capturing the next
most, and so on.345

In this work, we use the module PCA available in the Python
library Scikit-learn (Pedregosa et al. 2011), which follows
the implementation presented in Halko et al. (2009). Applying
PCA decomposition to our multi-dimensional dataset, described
by the aforementioned colour features, means collapsing it into350
a low-dimensional one, where each principal component (PC) is
a linear combination of the original colours (c) as:

PC =
N∑

j=1

a jc j , (1)

with a j the coefficients of the linear combination and N the num-
ber of involved colours. Features with consistently high coeffi-
cients across components explain a larger portion of the variance355
and are more important in the transformed space. The aim is to
identify principal components receiving significant contributions
by a set of original colours, and study their discriminating power
between red QSOs and the rest of the sample. We will refer to
such principal components as hyper-colours (HC).360

We run PCA on the mocks and COSMOS2020, standard-
ising the input features to ensure comparability across different
scales. By assuming three principal components, and we identify
a cut in the HC space which guarantees the highest discriminat-
ing power. We will refer to this cut as hyper-colours cut (HP-cut).365

Furthermore, we study the impact that the single colour fea-
tures, c j, have on the HC, based on their linear coefficients a j,
and we identify a cut in the multi-dimensional colour-colours
space made by them. We will refer to this selection cut as colour-
colour cut (cc-cut).370

3.2. Forecast analysis

By applying the HP- or cc-cut, we estimate the completeness
(C) and purity (P) of the selected sample. Completeness is the
fraction of mock red quasars correctly identified by the proposed
selection criterion and is defined as:375

C =
TP

TP + FN
, (2)

where TP (True Positives) and FN (False Negatives) are the num-
ber of red quasars correctly identified and missed by the cut. The
sum TP + FN then corresponds to the total of red quasars in the
mock sample. Purity is defined as the fraction of TP among all
selected objects. We calculate it as: 380

P =
TP

TP + FP
, (3)

where FP (False Positives) is the number of sources incorrectly
identified as red quasars by the selection cut. In this work, we de-
fine FP as the number of COSMOS2020 selected sources which
are not classified as AGN, plus the number of AGN candidates
passing the cut with DECam i − Ks < 1.7. We assume this met- 385
ric since 1.7 is the lower limit for optical-to-NIR excess in the
mock sample. Finally, we apply to EDF-F the colour-based se-
lection functions, and we study them with the aid of two control
samples of MIR-selected and radio-selected AGN candidates in
the same field. 390

3.3. Probabilistic Random Forest

A Random Forest is a machine learning algorithm that consists
of creating an ensemble of decision trees and combines their out-
puts to make predictions. Each tree in the forest is trained on a
random subset of the data and features, and the final classifica- 395
tion is made by majority voting (standard RF), or by averaging
the predicted probabilities assigned to each class across all the
decision trees (probabilistic RF). In a binary classification case,
probabilistic RF assigns each source two values, correspond-
ing to the probability of belonging to each of the two classes. 400
This approach allows us to estimate the confidence level of each
classification and make a probabilistic selection of candidate red
QSOs. RF can identify and rank the most important features that
differentiate red quasars from other objects, and it can handle
complex and non-linear relationships between features. Further- 405
more, RF is more robust towards over-fitting, which makes it
suitable for noisy or imbalanced datasets like in the case of tar-
geting red QSOs (Breiman 2001; Chen et al. 2004). In our work,
we used the module RandomForestClassifier available in
the Python library Scikit-learn. 410

First, we train a RF classifier on three sets of features (named
S1, S2 and S3) based on different combinations of Euclid-based
colours and magnitudes. More precisely, S1 includes the most
significant colours identified by PCA and S2 all the Euclid NIR
colours. S3 adds Euclid magnitudes on S2. This multi-steps ap- 415
proach allows us to test the impact of expanding the primary fea-
ture set in terms of purity, completeness and classification per-
formance.

For each set of features we identify the best model using
hyper-parameter tuning. The RF model operates within an hyper- 420
parameter space described by a set of key parameters, whose
combinations can impact the performance of the model itself.
These parameters include the number of trees, the minimum
amount of samples required to split a tree node and the leaf size.
We used the Scikit-learn module RandomizedSearchCV to 425
explore this hyper-parameter space and identify the best per-
forming set of key parameters. For each sampled combination
of parameters, the algorithm employs a stratified k-fold cross-
validation strategy with k = 5 folds. This technique divides the
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Fig. 4. Hyper colour-colour diagram showing the separation of mock
red QSOs from COSMOS 2020 sources. The contours are normalised
to their respective subsets. The proposed selection function is displayed
by the gray dashed lines.

dataset into five partitions and trains the model on four of them,430
using the fifth for validation. The goal of this approach is to get
a robust estimate of the model performance and check if over-
fitting occurs to certain partitions. The best combination of pa-
rameters is selected based on the cross-validation accuracy.

Through hyper-parameter tuning and cross-validation (run435
with a fixed random seed for reproducibility), we obtain an opti-
mised RF model for each initial set of features (S1, S2 and S3).
We compare the three models in terms of feature importance,
completeness and purity, and we apply the best one to the Eu-
clid Q1 EDF-F dataset. We discuss the results and our findings440
in Sect. 4.

4. Results

In this section, we present the findings we obtained for the steps
described in Sect. 3.

4.1. Selection function in the hyper-colour space445

The PCA on mocks and COSMOS2020, run in VISTA-defined
multidimensional colour space, provides three HC whose coef-
ficients are reported in Table A.2. HC1 is a weighted average of
all the input colour features, with a slight emphasis on J−Ks and
i− Ks. HC2 and HC3 are dominated by H − Ks and i− Ks. Their450
explained variances (91%, 6.2% and 2.7%, respectively) indicate
that HC1 is related to the overall colour gradients across the fea-
ture set, while HC2 and HC3 isolate information specific to a
certain feature. The combination of HC1 and HC3 provides the
strongest discriminating power, as displayed in Fig. 4. The con-455
tours, normalised to their respective subsets, show that this HC
space is able to effectively disentangle the populations of ob-
served sources and mock red QSOs. The HC-cut of HC1 > 0.6
and HC3 > −0.9 leads to an overall completeness of 98% with
81% purity. Among the AGN candidates passing the cut, 91% of460
them have DECam i − Ks > 1.7. As reported in Sect. 3, based
on mocks we consider this as a requirement to identify possible
obscured AGNs and flag them as candidate red QSOs.

We run again the PCA, transferring the original VISTA
colour features into the Euclid-like colour space, yielding to sim-465
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Fig. 6. The VISTA colour-colour diagram showing the separation of
mock red QSOs from COSMOS 2020. The proposed colour-colour se-
lection function is displayed by the gray dashed lines. A subset of can-
didate AGN overlays the selection, colour-coded as i − Ks.

ilar results. The coefficients of the principal components are dis-
played in Table A.3. Analogously to the VISTA-based HC, the
Euclid-based HC1 is dominated by YE − HE and HC3 gets most
contribution from IE − HE, tracking the optical-to-NIR transi-
tion. Figure 5 displays the Euclid-like HC space formed by HC1 470
and HC3. An HC-cut of HC1 > 0.3 and HC3 > −0.9 leads to an
overall completeness of 97% with 68% purity.

Beyond unveiling hyper-colours, PCA highlights the origi-
nal colour features, c j in Eq. (1), bringing the most weight in
the identification of candidate red QSOs. More precisely, in the 475
VISTA parameter space, the most important colours for HC1,
HC2 and HC3, based on their linear coefficients, are J − Ks,
H − Ks and i − Ks. In the Euclid-like parameter space, the most
important features for the tree components are YE − HE, JE − HE

and IE − HE, respectively. We further advance our analysis by a 480
visual and quantitative assessment of the separation of mock red
QSOs using these multidimensional colour-colour spaces.
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Fig. 7. The VISTA colour-z diagram showing the separation of mock
red QSOs from COSMOS2020. The colour-code adopted for displayed
populations are as in Fig. 6.
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4.2. Photometric selection in colour-colour space

Figure 6 displays the separation between mock red QSOs and
the COSMOS2020 dataset achieved in a multidimensional pa-485
rameter space spanning from optical to NIR wavelengths and
defined through the most important colour features according to
PCA. The two populations are compared in the J −Ks vs H −Ks
diagram, and COSMOS2020 is further split in two subsets to
highlight candidate AGN. If we apply the cut J − Ks > 0.8 and490
H − Ks > 0.2, we obtain an overall completeness of 99% and
a purity of 78%. The 85% of the candidate AGN passing this
multidimensional colour cut responds to the mock-calibrated red
excess of DECam i − Ks > 1.7. As the cc-cut is defined through
optical and NIR colours, the estimate of purity can be interested495
by dependences on redshift and magnitude. We first estimate it
as a function of redshift, identifying intervals with major degen-
eracies between the populations at play (Fig. 7). We obtain 90%
purity at z < 0.5, 69% at 0.5 < z < 1.5, and 87% at higher red-
shifts. The magnitude dependency sees purity values of 77% for500
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Fig. 9. The Euclid-like colour-redshift diagram showing the separation
of mock red QSOs (in red) from COSMOS2020 (golden contours). The
COSMOS2020 passing the proposed cc-cut is displayed in purple.

H < 20, 65% for 20 < H < 22 and 86% for objects in the
interval 22 < H < 23.5.

We proceed with the forecast analysis using the same metric,
but defined with Euclid-like photometry. We study a grid of mul-
tidimensional cc-cuts to maximise the separation between the 505
subsets at play, and we weight the FP rate with the unreddened
COSMOS2020 AGN candidates. The results are displayed in
Fig. 8, with the colour-redshift evolution shown in Fig. 9. In this
case we find that the colour cut, YE −HE > 0.7 and JE −HE > 0.3
with IE − HE > 1.8, leads to an overall 99% completeness and 510
67% purity, with redshift-dependent fluctuations: 86% purity at
z < 0.5, 57% and 63% at 0.5 < z < 1.5 and higher redshifts, re-
spectively. Purity values with magnitudes are 56% for HE < 20,
50% for 20 < HE < 22 and 77% for objects in the interval
22 < H < 23.5. 515

4.3. Colour-colour selection applied to Euclid Q1

Having established the methods for the selection of red quasars
based on mock and observed training samples in the previ-
ous sections, we now apply these methods to the Euclid Q1
EDF-F dataset. The selection is supported by control samples, 520
MIR-selected and radio-selected AGN candidates, introduced in
Sect. 2. Figure 10 displays the discriminating power of the pro-
posed multidimensional colour-colour cut, yielding to an over-
all 98% completeness of the mock sample. The colour-redshift
evolution is displayed in Fig. 11. The MIR-selected and radio- 525
selected AGN have a percentage of 77% and 47% reddened
sources, according of the proposed cut IE − HE > 1.8. Among
them, the 87% passes the multidimensional cc-cut. The selec-
tion functions are summarized in Table 2. Combining the cc-cut
with the RF classification probability (described in Sect. 3) we 530
flag 151 853 sources as candidate red QSOs.

4.4. Random Forest analysis

We apply a probabilistic RF classifier to identify candidate red
quasars starting from a first set of photometric features, S1, in-
cluding the most significant colours according to PCA: JE − HE, 535
YE −HE and IE −HE. The hyper-parameter search lead to an opti-
mised model with 100 trees, minimum split size of 10 and min-
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Table 2. Forecast red QSOs Completeness (C) and Purity (P) from NIR
selection functions. The first two rows report the selection function de-
fined in the VISTA colour space, the last two refer to the reconstructed
Euclid photometry.

Candidate red QSO selection function C P

HC1 > 0.6 and HC3 > −0.9 0.99 0.82
J − Ks > 0.7, H − Ks > 0.3, 0.99 0.79and i − Ks > 1.7
HC1 > 0.3 and HC3 > −0.9 [Euclid-like] 0.97 0.78
YE − HE > 0.7, JE − HE > 0.3, 0.98 0.80and IE − HE > 1.8
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Fig. 12. UMAP visualisation for the classification results of the prob-
abilistic RF run on the most significant colour features. Hexagons are
colour-coded by the probability of being a candidate red quasar. The
overlayed scatter plot displays a random subset with symbols reflecting
the empirical cc-cut. Stars represent objects previously classified as red
QSOs. Circles are employed otherwise.

imum leaf size equal to 1. This configuration yields to a mean
cross-validation accuracy of 95% with a standard deviation of
< 1%. We recover feature importance values of 0.35 for JE −HE, 540
0.39 for YE − HE and 0.26 for IE − HE. Applying a probability
threshold of P > 0.7 for classification, we obtain 98% complete-
ness and 87% purity. We determine the probability threshold so
that the completeness does not fall below the value we achieved
using empirical cc-cuts. This criterion ensures that the RF clas- 545
sification is conservative at least as much as the other selection
methods while improving purity.

To gather further insights from our analysis, we employ
the Uniform Manifold Approximation and Projection algorithm
(UMAP). As described in McInnes et al. (2018), UMAP is a non- 550
linear dimensionality reduction technique that preserves both
the local and global structure of the data and highlights possi-
ble clusters and patterns. We use UMAP to visualise the dataset
in a reduce-dimensionality space and check the separation be-
tween classes. The UMAP visualization of the classified objects 555
(Fig. 12), colour-coded by the probability of being a red QSO,
shows that a threshold of 0.7 outlines a boundary region between
the two classes. One-hundred sources randomly drawn from the
test set are plot over the map, with symbols following the em-
pirical cc-cut: stars for sources classified as red quasars, cir- 560
cles for sources that did not pass the selection. The overlay dis-
plays a direct comparison between the empirical colour selection
method and the RF classification. Previously selected sources
are mostly present in the region with higher probability of be-
ing a red quasar, and a minority populates the transition region. 565
The RF refinement of these boundaries goes beyond the level
of accuracy achieved by the empirical cc-cut, thereby reducing
contamination and raising purity.

We repeat the analysis on extended sets of features, specifi-
cally on S2 and S3, in order to assess the impact of additional in- 570
formation on the classification performance. More precisely, S2
includes YE − JE, JE −HE, YE −HE and IE −HE, while S3 expands
S2 with the magnitudes IE, YE, JE and HE. The RF classifier op-
timised for S2 yields to similar results, without improving com-
pleteness and purity. The feature importance analysis assigns to 575
the additional colour, YE− JE, a value of 0.03. Such results aligns
with our findings from S3. In this case, the importance of the
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Fig. 13. UMAP visualisation of the Euclid Q1 dataset, colour-coded
by the RF-based probability of being a red QSO. The overlayed scatter
plot displays the 25% of the validation samples. MIR and radio-selected
candidate AGN are marked by circles and diamonds, respectively. The
symbols are filled in white if the source passed the empirical cc-cut,
otherwise they are coloured in light gray.

magnitude features is < 2% and no increase in completeness
and purity is registered.

Along this multi-step analysis, the dominant importance of580
the PCA-selected colours remains unchanged and leads to a con-
solidated probabilistic RF model that we apply to the Euclid Q1
EDF-F sample.

The UMAP visualisation of the Euclid Q1 sample, displayed
in Fig. 13, is colour-coded by the probability of being a red QSO.585
The over-plotted symbols represent a fraction (25%) of the two
control samples: circles denote the MIR-selected AGN candi-
dates, while diamonds represent the radio-selected AGN candi-
dates. White markers indicate the sources that passed the previ-
ous empirical cc-cut selection, and light gray colours those that590
were not classified as red quasars. Analogously to our findings
from the analysis of the COSMOS2020 dataset, we notice that
spatial distribution of the sources clusters around two different
populations, according to their likelihood of being red QSOs,
and that the boundaries obtained with RF are more robust against595
contaminants, compared to the empirical cc-cuts.

5. Discussion

The VISTA-based HC spaces provide effective separation be-
tween mock red QSOs and observed sources. Their translation
into the Euclid-like HC space preserves the structure of the pri-600
mary component (HC1), while introducing small shifts in the
secondary components (HC2 and HC3). These shifts are ex-
pected due to the differences in filter characteristics and pho-
tometric uncertainties. The photometric selection function, us-
ing multi-dimensional colour cuts in the Euclid optical and NIR605
regimes, forecasts high completeness (98%) and moderate pu-
rity (78%) for candidate red QSOs. Completeness of the mocks
remains consistently high across redshift and magnitude inter-
vals, suggesting that the proposed selection effectively captures
the reddened QSO population. Purity decreases in intermediate610
redshift ranges and at faint magnitudes, where physical degen-
eracies between red QSOs and red galaxies become more signif-
icant. However, comparing redshift and magnitude distributions
of the mock red QSOs and the sources in COSMOS2020 sug-
gests there is also an observational effect at play. Figure A.1615
shows that the redshift distribution of mock red QSOs peaks

at higher values compared to the observed sources, as they are
modelled to represent a deeper survey aiming to capture the
properties of obscured AGN. Purity estimates can be affected
in the mismatched higher-redshift range. The lower purity at in- 620
termediate redshift could be partially mitigated by training the
selection function on larger, more representative datasets that in-
clude additional sources of variation, such as differences in host
galaxy properties or environmental factors. Future work could
explore the inclusion of environmental parameters, such as local 625
density or clustering, to refine selection criteria. Larger values of
purity for bright objects is also influenced by the broader pho-
tometric extent of Euclid-like mocks, which outnumber COS-
MOS2020 at lower magnitudes (Fig. A.2). On the opposite side,
fainter sources are more prone to contamination by non-AGN 630
populations due to increasing photometric uncertainties, an as-
pect that potentially reduces purity at fainter magnitudes.

In our analysis, we used a red QSO mock catalogue based
on the stacking of SDSS quasar spectra with varying levels
of reddening applied. While this approach effectively models 635
the intrinsic quasar properties, it does not account for the host
galaxy contamination. The host galaxy flux can dominate over
the AGN emission in the optical and near-infrared bands, es-
pecially for lower-redshift sources. The consequent dilution of
quasar colours may reduce the effectiveness of our HC selection 640
criteria, which are primarily optimised for quasar-dominated
SEDs. Such aspects set the seed for future works, where our
mock catalogue incorporates realistic galaxy templates, either
by adding scaled galaxy SEDs to the QSO spectra or by using
simulations informed by empirical measurements of quasar host 645
properties. Nevertheless, our analysis still provides valuable in-
sights into the potential of Euclid for identifying red quasars. As
reported in Sect. 4, we also note that our results remain robust
for brighter sources (H < 22), aligned closer to SDSS, where the
impact of host galaxies is expected to be minimal. 650

The probabilistic RF classifier refines the empirical cc-cut
by achieving a higher completeness and purity (98% and 88%,
respectively). This improvement is due to the RF ability to in-
tegrate non-linear relationships in the multi-dimensional feature
space, which are not detected with simpler colour-colour cuts. 655

A key aspect in our RF approach is to start from a set
of features including the most significant colours, according to
PCA, and then expand it with additional colours and magnitudes.
Through feature importance analysis, this multi-step methodol-
ogy allows us to assess how the classification performance is 660
impacted by the information encoded in the additional features.
Furthermore, such expansion did not lead to substantial improve-
ments in completeness and purity, confirming the NIR multi-
dimensional colour space (JE − HE, YE − HE, and IE − HE) as the
most informative and effective to classify out target population. 665

The UMAP visualisation of the datasets, colour-coded by the
probability of being a red quasar, shows that the threshold P >
0.7 effectively segments the transition region between the two
classes. In comparison with the overlayed validation datasets, it
shows consistency and robustness against contaminants. 670

The visual inspection of the selected sources reveals that
most candidates exhibit point-like or slightly extended profiles,
consistent with AGN-dominated systems. The multi wavelength
images in the first three panels of Fig. 14 show sources with
bright NIR emission and a weaker component in the VIS band, 675
consistent with significant optical light attenuation due to dust.
These characteristics suggest that the sources are indeed candi-
date red QSOs. Also in this case we highlight the importance of
this dataset for future morphological analyses, performing host
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Fig. 14. Candidate sources. Panels show, from left to right, the RGB image and the HE, JE, YE and IE bands. Raw images were obtained through
ESA Datalabs (Navarro et al. 2024).

galaxy decomposition and adding information on the properties680
of the AGN component and its dusty cocoon.

In addition to examples of individuals red QSOs candidates,
in the fourth panel of Fig. 14 we introduce an example of can-
didate dual AGN system. The image displays two distinct com-
pact sources with optical-to-NIR colour IE − HE = 2.4, at red-685
shifts 0.86 (central source) and 0.9, classified as candidate red
quasars with RF-based probability of 0.82 (central source) and
0.74. Their proximity consists in a projected distance less then
100 kpc and difference in redshift not surpassing 0.06. Such cri-
teria aligns with the definition of dual AGN given in previous690
work (De Rosa et al. 2019). Such systems offer a unique obser-
vational window into AGN triggering mechanisms, galaxy merg-
ers, and the evolution of supermassive black holes. The example
presented in this work will be part of future systematic searches
of dual AGN systems. This effort will use morphological analy-695
sis and spectroscopic follow-up where available. The results of
this investigation will be presented in forthcoming publications.

We expand this first characterisation of the selected sources
making a comparison between candidates selected through
VISTA and DECam colours and via Euclid-only colours. In the700
EDF-F we identify a sample of 43528 objects observed by Eu-
clid, the Vista Hemisphere Survey (VHS, McMahon et al. 2019)
and DES. Among them, we select the 3% and the 4% using
solely Euclid and VISTA+DECam colours, respectively.

As shown in Fig. 15, Euclid-only selected objects extend into 705
redder IE −HE values. This suggests that Euclid is better at iden-
tifying the reddest sources, which might be missed by VISTA.
Furthermore, we observe that the candidates identified trough
the VISTA+DECam system display a broader distribution to-
wards bluer colours. This can be explained by VISTA depth and 710
resolution, both inferior to Euclid, leading to misclassification
and missing reddened sources. This preliminary analysis sug-
gests that Euclid better resolution and NIR sensitivity enables a
more complete and robust identification of red QSOs.

The first panel of Fig. 16 shows an example of red QSO 715
candidate selected with Euclid only. The image in the IE band
shows a compact source with a bright centre and some faint sur-
rounding structure which can be attributed to the quasar host
galaxy. The presence of asymmetry in the outer structure hints at
a merger history or disturbed morphology. The Euclid HE band 720
image shows a smooth compact core with higher emission than
in the optical. This proves that the optical-to-NIR contrast is
high. The VISTA and DES images are noisier and the source
is harder to distinguish. The poorer signal can explain why the
VISTA+DECam system did not classify this sources as a candi- 725
date red QSO. Images are normalised and in flux units.

We repeat the visual inspection on sources that were se-
lected as candidate red QSOs through the VISTA+DECam sys-
tem only. In the second panel of Fig. 16, the Euclid IE band
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Fig. 15. Optical-to-NIR colour distributions for the EDF-F sample of
candidate red QSOs observed through both Euclid and VISTA+DECam
photometry. The orange and purple distributions are for candidates se-
lected only via Euclid and VISTA+DECAm colours, respectively.

displays an extended morphology with clear structures, possi-730
bly star-forming regions or satellite companions. In the DECAm
i band only the overall structure is less visible due to the lower
resolution compared to Euclid. Similarly, in the VISTA bands
the galaxy is less resolved and appears to be more concentrated
in NIR. In this case, DECam and VISTA lower resolution makes735
the system look more compact, while Euclid sees a more ex-
tended morphology with detailed substructural features. There-
fore, the VISTA+DECAm colours used for the selection can be
biased towards the integrated light of the system rather than its
true morphology. This suggest that the Euclid-selected sample740
of red QSOs tends to be cleaner, avoiding that extended galaxies
are misclassified as quasars. Additional examples are reported in
the other panels of the figure.

In this work, we flag over 150 000 sources in the EDF-F as
candidate red QSOs. This population serves as a first base for745
future refinements, incorporating additional diagnostics such as
MIR data, spectral analyses (spectra are not considered in this
work) and morphological compactness. These features should
help to further improve purity without compromising complete-
ness. In terms of number expectations, we refer to the studies by750
Euclid Collaboration: Bisigello et al. (2024) and Euclid Collabo-
ration: Selwood et al. (2025), conducted in anticipation of the Q1
data release. The former predicts a fraction of 57% AGNs among
NIR-selected sources in EDF-F. The latter estimates an obscured
fraction of 26% in the expected AGN population. Applying these755
forecasts to our EDF-F sample, we calculate 196 992 expected
obscured AGNs. This is compatible with our selected sample,
which is set to include reddened AGNs, a contamination of red
galaxies, and red QSOs. The classification of these sources will
be the subject of future refinements based on the aforementioned760
criteria.

In this work, we excluded X-ray sources from the COS-
MOS2020 sample. However, their integration will be beneficial
to future analyses, as their properties are directly linked to the de-
gree of obscuration (Ma et al. 2024). This approach, which can765
be tested against the Q1 catalogue of X-ray AGN counterparts
by Euclid Collaboration: Roster et al. (2025), can help improve

the distinction between truly reddened AGNs from red galaxies,
thereby improving the purity of the selected sample.

6. Conclusions 770

In this work, we explored the capability of selection crite-
ria based on Euclid optical and NIR photometry to identify
and characterize red quasars. We explored the separation in a
multi-dimensional colour-colour space, as a function of magni-
tude and redshift, and we compared it with selections based on 775
VISTA+DECAm photometry. Through a joint PCA and statis-
tical analysis we identified selection functions achieving high
completeness and moderate purity. Then, to refine the iden-
tification of red QSOs, we used a probabilistic RF classifier,
which significantly improved purity (88%) and maintained high 780
completeness (98%). This result reflects the capability of this
method to identify complex, non-linear relationships in a multi-
dimensional colour space, beyond the reach of simple empirical
cuts. Additionally, visualization methods such as UMAP confirm
a clear separation between red QSOs and contaminants, reinforc- 785
ing the robustness of our selection criteria.

Our analysis shown that Euclid-based selection recovers red-
der quasar candidates than those identified by VISTA+DECam,
as evidenced by shifts in the IE − HE distribution. This sug-
gests that Euclid ’s superior depth and resolution enable a more 790
complete detection of highly obscured sources, which might
be misclassified or missed in lower-resolution surveys. Con-
versely, we found that some VISTA+DECam-selected sources
appear as extended galaxies in Euclid images, indicating that
lower-resolution surveys may introduce contamination by com- 795
pact galaxies in the sample of red QSOs.

A key insight from future morphological inspection of the
selected candidates will be to investigate the capability of Euclid
to resolve host galaxy features in a subset of sources, distinguish-
ing between true quasars and compact galaxies. 800

We used our findings to build a first census of candidate red
QSO in Euclid Q1. The catalogue will be released as a fits ta-
ble to the Euclid Collaboration. This work provides the founda-
tion for systematic red QSO searches in the Euclid Wide Survey
(EWS). The proposed selection function will be further refined 805
with additional diagnostics, including mid-infrared data, spec-
troscopic follow-ups and the analysis of the host morphology.
This first census of red QSO candidates in Euclid Q1 represents
a significant step towards a more complete understanding of the
dusty AGN population and its connection to galaxy evolution. 810
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Fig. 16. Examples of two candidate red QSOs. The first and the second rows show an Euclid only and VISTA+DECam-only selected candidate,
respectively. Panels from left to right display the object in the IE and HE filters, in DECAm i and VISTA Ks.
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Appendix A: Supplementary information

Table A.1. The characteristics of filters in COSMOS2020 used for tem-
plate fitting. The central wavelength correspond to the filter mean wave-
length weighted by transmission. Filter names in bold refer to the recon-
structed photometry.

Filter Name Central λ (Å) Bandwidth (Å)
MegaCam CFHT u 3682 598
SuprimeCam IA427 4263 207
SuprimeCam B 4454 892
SuprimeCam IA464 4635 218
SuprimeCam g 4771 1265
HSC g 4812 1500
DECam g 4826 1480
SuprimeCam IA484 4849 229
SuprimeCam IA505 5062 231
SuprimeCam IA527 5261 243
SuprimeCam V 5464 1900
SuprimeCam IA574 5764 273
HSC r 6230 1547
SuprimeCam IA624 6232 300
SuprimeCam r 6274 1960
DECam r 6432 1480
SuprimeCam IA679 6780 336
SuprimeCam IA709 7075 316
Euclid VIS IE 7180 3900
SuprimeCam IA738 7360 324
SuprimeCam i 7667 2590
SuprimeCam IA767 7686 365
HSC i 7702 1471
DECam i 7826 1470
SuprimeCam IA827 8244 343
HSC z 8903 766
SuprimeCam z+ 9041 847
SuprimeCam z++ 9099 1335
DECam z 9178 1520
HSC Y 9771 1810
UltraVISTA Y 10214 923
Euclid NISP YE 10858 2630
UltraVISTA J 12535 1718
Euclid NISP JE 13685 4510
UltraVISTA H 16454 2905
Euclid NISP HE 17739 5670
UltraVISTA Ks 21540 3074
Spitzer IRAC I1 35313 7443
Spitzer IRAC I2 44690 10119

Table A.2. Principal Component Coefficients for each VISTA HC.

Feature HC1 HC2 HC3
J − H 0.490950 −0.673444 −0.297702
H − Ks 0.485117 0.738134 −0.267680
J − Ks 0.521204 −0.036960 −0.303254
i − Ks 0.501972 −0.016317 0.864730

Table A.3. Principal Component Coefficients for each Euclid-like HC.

Feature HC1 HC2 HC3
Y − J 0.494312 −0.675909 −0.345271
J − H 0.492558 0.732726 −0.220114
Y − H 0.513889 0.021720 −0.295104
I − H 0.498959 −0.076081 0.863280
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Fig. A.1. Redshift distributions of the mock and the COSMOS2020
dataset. For the latter, we consider the photometric redshift calculated
with LePhare and available in The Classic catalogue.
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Fig. A.2. VISTA H magnitude distributions of the mock and the COS-
MOS2020 dataset.
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