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ABSTRACT

Light emission from galaxies exhibit diverse brightness profiles, influenced by factors such as galaxy type, structural features and interactions
with other galaxies. Elliptical galaxies feature more uniform light distributions, while spiral and irregular galaxies have complex, varied light
profiles due to their structural heterogeneity and star-forming activity. In addition, galaxies with an active galactic nucleus (AGN) feature intense,
concentrated emission from gas accretion around supermassive black holes, superimposed on regular galactic light, while quasi-stellar objects
(QSO) are the extreme case of the AGN emission dominating the galaxy. The challenge of identifying AGN and QSO has been discussed many
times in the literature, often requiring multi-wavelength observations. This paper introduces a novel approach to identify AGN and QSO from a
single image. Diffusion models have been recently developed in the machine-learning literature to generate realistic-looking images of everyday
objects. Utilising the spatial resolving power of the Euclid VIS images, we created a diffusion model trained on one million sources, without
using any source pre-selection or labels. The model learns to reconstruct light distributions of normal galaxies, since the population is dominated
by them. We condition the prediction of the central light distribution by masking the central few pixels of each source and reconstruct the light
according to the diffusion model. We further use this prediction to identify sources that deviate from this profile by examining the reconstruction
error of the few central pixels regenerated in each source’s core. Our approach, solely using VIS imaging, features high completeness compared to
traditional methods of AGN and QSO selection, including optical, near-infrared, mid-infrared, and X-rays. Our study offers practical insights for
refining diffusion models and broadening their applications throughout the Euclid survey area, underscoring the utility of this approach in diverse
astronomical contexts beyond just AGN identification.

Key words. Galaxies: active – techniques: image processing – methods: data analysis – methods: observational

1. Introduction

Ever since the discovery that the mass or dynamics of a spheroid
within a galaxy correlates with the mass of any detectable
supermassive black hole (SMBH) at its centre (e.g., Dressler
1989; Kormendy & Richstone 1995; Magorrian et al. 1998; Fer-
rarese & Merritt 2000, and more recently, Sahu et al. 2019;
Davis et al. 2018, 2019 and references therein), it has been be-
lieved that most – if not all – galaxies with a spheroidal (or
pseudo-spheroidal) component contain a SMBH at their centre.
If galaxy’s emission shows evidence for its central SMBH be-
ing actively fuelled, it will emit non-thermal radiation leading
it to be classified as an active galactic nucleus (AGN). Depend-
ing upon the luminosity of that emission and its contrast with
the stellar emission from the surrounding galaxy, it could have
a classification ranging from a Seyfert galaxy (for the weakest
emission) through to a quasi-stellar object or QSO (for the most
luminous).

For imaging in wavebands such as the optical and near-IR,
the presence and detectability of emission from the area directly
around a SMBH depends on multiple factors. This can include
the rate of infall of material into the region around the SMBH,
the amount of obscuration (absorption or scattering) towards that
region, the contrast between the SMBH-related emission and
that of the surrounding galaxy, the redshift, and the intrinsic
compactness of the stellar distribution of the host galaxy. The
growth and mass of a central SMBH is intimately related to the
evolution of its host galaxy, not least through the action of en-
ergy, momentum and radiative feedback from outflows originat-
ing from the area around the SMBH on the properties of the
stellar populations and ISM (see Harrison & Ramos Almeida
2024 for a recent review). Consequently, identifying and charac-
terising SMBHs, particularly during periods of active feedback
is central to the study of SMBH and galaxy evolution.

A more precise classification of a source as an AGN is pos-
sible by using a much wider range of multi-wavelength data.
This can include spectroscopy and considering the much broader
spectral energy distribution of the galaxy and/or the candidate
AGN. However, it is still worth considering the efficient selection
of AGN candidates from single-band imaging as a first step in
identifying large samples of AGN for further study. In particular,
with the advent of the uniform, deep and high spatial-resolution
optical imaging data set from the Euclid mission, covering a

⋆ e-mail: grant.stevens@bristol.ac.uk

large fraction of the extragalactic sky, there is the potential to de-
rive unprecedentedly large samples of AGN across a wide range
of (optical) luminosity and redshift parameter space with the use
of an appropriate and sufficiently efficient technique. The tech-
nique can then be subsequently refined by feeding back the re-
sult of using other multi-wavelength data, allowing us to con-
firm or reject candidates. With sufficient refinement, this further
assessment step subsequently becomes either unnecessary or at
the very least an efficient stage in compiling reliable samples.
This then opens the door to production of unprecedentedly large
and reliable samples of optically-selected AGN.

In this work, we present a technique that can achieve the
above goal. In the following we describe the use of diffusion
models for generating samples of AGN candidates using Euclid
VIS IE band (Euclid Collaboration: Mellier et al. 2024; Euclid
Collaboration: Cropper et al. 2024) imaging alone. Diffusion-
based methods are machine-learning models used to generate or
reconstruct data by evolving a random distribution of pixels into
a structured output over several steps. This technique outper-
forms traditional methods like median pixel substitution or in-
terpolation, which often struggle to recreate complex structures
within images. By using these models for ‘inpainting’, where we
adaptively recreate parts of the image, we can measure the dis-
crepancies between the original and generated pixels. Examining
these errors allows us to separate AGN, QSOs, and other sources
from the broader galaxy population.

Briefly, the technique takes an image of a galaxy that may or
may not have AGN emission at its centre and excludes those cen-
tral pixels that may be influenced by AGN emission. The model
then predicts (‘inpaints’) the underlying stellar light profile in
those pixels from a comparison of the rest of the galaxy image
to a model derived from a very large sample of similar galaxy
images. Any significant difference between the prediction and
true image in those central regions indicates the potential pres-
ence of AGN emission. Because AGN are comparatively rare,
the sample of galaxy images used in the generation of the model
does not need to be filtered to reject AGN, the method will be
inherently biased to the ‘typical’ behaviour of galaxy light dis-
tributions and so naturally down-weights or excludes predicting
central regions with AGN emission.

While this paper details the basic technique applied to VIS
imaging data, as this is a machine-learning technique, future en-
hancements would allow incorporation of the results of a de-
tailed assessment step, involving other data sets, in order to fur-
ther improve the accuracy and reliability of the AGN candidate
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Fig. 1. The diffusion pipeline (top) progressively adds noise to images, training the model to predict what noise was added from the previous step.
Once trained and during inference, the model takes as input pure Gaussian noise and is able to iteratively remove the noise until a realistic galaxy
image remains. Repeat inference runs will provide a different and unique galaxy from those it was trained on. The Repaint pipeline (bottom) takes
the trained diffusion model and enables conditioning to allow parts of an existing image to be preserved by masking. At each denoising step,
noise levels in the preserved pixels are adjusted to ensure they integrate correctly with the newly-generated sections. After T iterations, the output
includes both the retained pixels and newly generated areas, creating a different yet plausible final image.

samples produced directly by the technique. Such steps could
include multi-wavelength cross-matching or spectroscopic vali-
dation, from which we can ultimately reduce the need for further
time-expensive refinement steps. Additionally, the technique as
presented here uses a standard treatment of diffusion models
which in principle can be significantly further optimised for the
specific characteristics of the Euclid data set, thereby improving
further the efficiency of the processing of the Euclid data. Such
work would be the subject of future papers.

2. Diffusion-based inpainting

2.1. Generative models

Generative models such as generative adversarial networks
(GANs, Goodfellow et al. 2014, 2020) or variational autoen-
coders (VAEs, Kingma 2013) are trained with the aim to learn
the underlying distribution of a data set to generate novel exam-
ples.

Using a pair of competing networks, GANs ensure that once
trained the generated images are of high quality, leading to the
creation of many artificially generated data sets that are indistin-
guishable from the original data set (Karras et al. 2020). How-
ever, the adversarial training loop is often difficult to train, of-
ten leading to mode collapse, meaning the generator focuses on

only a small subset of the total search space leading to generating
samples of similar instances (Thanh-Tung & Tran 2020).

On the other hand, VAEs use an encoder network to com-
press the data into a latent space of fewer dimensions. The net-
work then uses the latent space to recreate the input through an
often symmetric decoder network. VAEs provide better cover-
age over the search space, improving stability during training
as well as increased variety in generated outputs. However, the
drawback for VAEs becomes apparent when handling more com-
plex, high dimensional data. The use of latent spaces does not
guarantee a lossless compression of information, often leading
to accurate but blurry outputs.

2.2. Diffusion models

Diffusion-based models provide an alternative process for im-
age generation that allows for both good coverage, as well as
the ability to represent complex data distributions (Dhariwal &
Nichol 2021). For both GANs and VAEs, their significant ad-
vantage with respect to diffusion models is that they offer faster
sample generation and lower computational costs. Whereas dif-
fusion models trade off speed for superior sample quality, mode
coverage, and flexibility in controllable generation making them
our preferred choice in the task of AGN identification.
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Fig. 2. Lnear schedule from the original diffusion implementation,
showing the parameter converging early in the timesteps. This results in
training images becoming pure noise too early into the timesteps lead-
ing to suboptimal performance. The switch to the cosine-beta schedule
adds noise at a much slower rate, prioritising smaller updates in the
early stages leading to more unique noised images throughout training.

This paper makes use of one such implementation, denoising
diffusion probabilistic models (DDPMs, Ho et al. 2020). Diffu-
sion works on the following premise: by continually adding a
small amount of noise to an image, eventually one is left with
an image of complete noise without any remnants of the original
input. If the noise is generated in a stochastic but consistent way,
such as from a Gaussian distribution, we can use a network to
learn the dynamics of the noise and perform a reverse process.
By predicting the noise that was added to an image x at timestep
t, we can remove this noise to produce image xt−1. This forms an
iterative process originating from some final timestep T , an im-
age of pure noise, to a realistic image from the data distribution
at timestep 0.

The formal definition of this diffusion process, following
Ho et al. (2020) and Nichol & Dhariwal (2021), is expressed
as q(x1, . . . , xT ) which represents the joint distribution of a se-
quence where each image xt is progressively noised.

q(x1, . . . , xT |x0) :=
T∏

t=1

q(xt |xt−1) , (1)

where, q(xt |xt−1) specifies the conditional distribution at each
timestep t, modelling the incremental addition of noise:

q(xt |xt−1) := N(xt;
√

1 − βt xt−1, βtI) . (2)

The βt term defines the variance of the Gaussian noise added
at each timestep. By ensuring a gradual increase in noise, the
model is more easily able to learn the transition from the data
distribution to the noise distribution.

With a large enough T and an adjusted time-dependent vari-
ance βt, xT will approach a Gaussian distribution that is isotropic,
meaning uniform in all directions. For the denoising process,
starting at a xT ∈ N(0, I), accurately modelling q(xt−1|xt) is not
tractable, requiring a neural network to approximate it. An ex-
ample of the full diffusion process can be seen in the top panel
of Fig. 1.

Smith et al. (2022) also utilised the DDPM framework to
generate a data set of realistic galaxies. The model is trained us-

ing the Photometry and Rotation curve OBservations from Ex-
tragalactic Surveys (PROBES) data set (Stone & Courteau 2019;
Stone et al. 2021), a collection of large, well resolved objects
that feature significant internal structure. They provide analysis
of the quality of their generated images, showcasing the diffu-
sion model’s ability to create not only visually realistic images,
but also how they feature similar physical property distributions
such as half-light radius and flux-space colour values. They also
briefly explore the use of inpainting with their model to remove
satellite trails.

When researching diffusion models, papers utilising score-
based models are often used and spoken of interchangeably,
as they are different implementations of the same generative
process (Smith et al. 2022). Rather than the fixed sequence of
timesteps to denoise data, score-based methods apply stochastic
differential equations (SDEs) to estimate the data distribution’s
gradient (score). Working with SDEs and gradients allows for a
continuous range of possible diffusion paths. It is for this rea-
son that score-based models can be classed as the more general
framework for diffusion-based generative models. The use of
score-based generative models within astronomical applications
include galaxy image deconvolution (Adam et al. 2023; Spagno-
letti et al. 2024), gravitation lensing analysis (Adam et al. 2022;
Remy et al. 2023), and deblending (Sampson et al. 2024).

2.3. Noise scheduling

The larger the number of total timesteps T , the more refined
the model can become at accurately generating realistic images,
since less complex noise dynamics are required to be learnt for
each timestep t. This does, however, require the model to learn
the dynamics of more timesteps, leading to extra overhead in
both training and inference, since more steps must be performed
to traverse from pure noise to realistic images.

In the original DDPM paper, Ho et al. (2020) made use of
a linear schedule for the amount of noise added to the image
at each t. Although the produced images were competing with
state-of-the-art methods, Nichol & Dhariwal (2021) found that a
linear schedule was not well suited to low resolution images and
proposed using a cosine-beta noise schedule as a replacement.
By stretching the noise levels so that less noise is added in early
iterations and more in the later, the process overcame the issue
of images became too noisy too quickly. Figure 2 shows how the
scheduler impacts the β parameter used in Eq. (2). Equation (3)
shows how βt is calculated, where the reader is directed to Nichol
& Dhariwal (2021) for specifics on its derivation:

βt = 1 −
ᾱt+1

ᾱt
, (3)

where

ᾱt = cos
(

t/T + 0.008
1.008

π

2

)2

.

All models in this paper make use of the cosine-beta scheduler.
The impact of this scheduler on the high dynamic range nature
of astronomy data is explored in detail in Sect. 5.

2.4. Conditioning the model

Using the pipeline of DDPMs allows us to impose conditioning
on our input space. Throughout training, the model is already
conditioned on t. Due to the cosine scheduler discussed previ-
ously, the model will alter an image very differently at a timestep
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close to T , where the image is still very noisy, than when the im-
age is close to timestep 0 and near completion. However, we are
not limited to only conditioning by timestep, often multiple pa-
rameters are provided alongside each image. Typically, this is
in respect to ’class-conditioning’, where users can tune the ex-
pected output of the diffusion model to a specific class or cat-
egory (Radford et al. 2021; Zhang et al. 2023). By providing
an embedding space during training, the model learns not only
the dynamics of the noise but the inherent differences of noise
and non-noise pixel values for each of the representations. This
conditioning provides small nudges to the random walk, guiding
the denoising to the respective population of the class. Provid-
ing rich representations to the model has led to the impressive
text-to-image capabilities of popular diffusion-based implemen-
tations, such as Dall-E (Ramesh et al. 2022) or Imagen (Saharia
et al. 2022).

This type of conditioning allows the user to direct the im-
age generation to a particular class or style of image. However,
with the possibility of complex prompts and classes, it may be
difficult to know exactly what the output image will look like.
Furthermore, with diffusion’s ability to cover large areas of the
search space, a repeat sample of the same prompt is likely to pro-
duce an image very different from the first, even if the generated
image belongs to the requested class. This is due to the one-to-
many relationship between classes/prompts and their subsequent
generated outputs.

In a situation where the user requires consistency in part of
the image, a more direct manipulation of the produced pixels is
required. A process known as ’inpainting’ (Pathak et al. 2016;
Yeh et al. 2017; Yu et al. 2018; Wang et al. 2018), forces condi-
tioning of specific pixels within the image, allowing the model to
fix certain parts of the image whilst generating others – all whilst
remaining coherent and consistent across the image as a whole.
Allowing the user to selectively remove and replace certain as-
pects of images has gained a lot of popularity in the last few
years due to its mainstream adoption by nearly all smartphone
brands (Sargsyan et al. 2023).

2.5. Repainting

This paper uses a specific implementation of inpainting using
diffusion known as Repaint (Lugmayr et al. 2022). Due to the
model being conditioned on timestep t, where it is expecting the
whole image to be at a certain noise level, we can not simply take
an image and a corresponding mask and replace the masked pix-
els with noise. The model itself does not know that a mask has
been applied nor does it know that the inverse mask should re-
main unaffected. Instead, it will continue to remove noise across
the whole image as usual, leading to the clean parts of the image
becoming corrupted. It is also not possible to generate an entirely
new image and copy over the masked pixels to the original im-
age as there will be no continuity between the existing and new
elements.

To combine the parts of the image we want unchanged, and
the parts we want to generate, both the forward pass and the
backward pass of the diffusion process must be utilised. This
pipeline needs to generate an image xt that incorporates the mask
and the fixed pixels for each timestep t, as shown in Fig. 1.

Input

The main input of each timestep t of the repaint pipeline is the
denoised image, xt, from the previous timestep. To aid in the

understanding of the pipeline, this image is referred to as xdenoised
t

for this discussion. At the first iteration when t = T , the input is
simply an image of pure Gaussian noise.

Fixed pixels

To ensure that the pixels we want unchanged are still present at
the end of the diffusion process, we must interject these fixed
pixels during each timestep. However, as the model is expecting
all pixels to be at a specific noise level, as described in Eq. (2),
we must utilise the same scheduler used in training to add the
correct amount of noise for the current timestep t. Due to the
stochasticity present in adding Gaussian noise to the image, the
pipeline allows us to create N different versions of the input with
the required noise. By averaging these samples, the important
details of the image are more consistently preserved, ensuring
that once all T iterations are complete, the fixed pixels look iden-
tical to the original input. We refer to the image formed from the
average of the N samples as xnoised

t .

Utilising the mask

To combine the parts of the image we want to keep and the parts
we want to generate, we utilise a mask M, which is an array of
equal size to our image, with pixel values of either zero or one.
Pixels valued as one will be generated from scratch by the dif-
fusion process, with pixels valued zero being replaced at each
noise step with the fixed pixels in xnoised

t from the process de-
scribed above. The two parts can then be combined into a coher-
ent image and then passed back into the diffusion model to be
further denoised and progress onto timestep t − 1,

xt−1 = denoise[M × xdenoised
t + (1 − M) × xnoised

t ] . (4)

By denoising the combination of pixels we want to keep with the
generated pixels, we condition the diffusion process to ensure
that in the final image, all pixels are coherent, being conditioned
on the details found within the fixed pixels.

Incorporating the Repaint method for AGN identification has
the following benefits

– Diffusion methods have been proven their ability in many ap-
plications to accurately recreate complex data sets, allowing
for realistic generation of galaxy morphology images.

– There are no constraints on the size and shape of masks used
and, since Repainting is only applied at inference, no addi-
tional retraining is required.

– There exists a large imbalance of normal galaxies compared
to AGN, allowing for the model to learn a bias. This can be
exploited to create an outlier detection-based classifier with-
out explicitly requiring labels during training.

3. Data

3.1. Sample selection

Covering 63.1 deg2, the Euclid Q1 Data Release (Euclid Quick
Release Q1 2025) contains just under 30 million catalogued
sources (Euclid Collaboration: Romelli et al. 2025) in the Eu-
clid Deep Fields North (EDF-N), South (EDF-S), and Fornax
(EDF-F). In this work we use exclusively the VIS images (Eu-
clid IE band), because we aim to identify AGN candidates on a
single image. However, due to the varying distances and sizes
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Fig. 3. Initial results for pixel value differences across various selections. Comparing the ratios of the centre brightest pixel with the means of the
surrounding 1 and 2 pixel wide regions, show a clear distribution difference between galaxy and non-galaxy classes. The grey histogram shows
the distribution of the whole data set, showing how the images not captured in these selections compare. The median value for each IE magnitude
bin is shown in the respective vertical line.

of sources, an appropriate subset must be chosen to ensure the
model is presented with a sufficiently broad selection of resolved
galaxies. The following criteria are applied to the 30 million
source catalogue of Q1:

– the source must be detected in the VIS band
(vis_det_euclid>0);

– the source must have a IE magnitude brighter than 22.5 (23.5
− 2.5log(flux_detection_total_euclid) < 22.5);

– the source must not have any defects or abnormalities as sig-
nified by the detection flags (det_quality_flag_euclid
= 0 and flag_vis_euclid = 0);

– the source must have low probability of being spurious
(spurious_prob_euclid < 0.2);

– the source must have a large segmentation area
(segmentation_area_euclid>200);

– the signal-to-noise ratio of the total flux measurement must
be sufficiently high ( flux_detection_total_euclid

fluxerr_detection_total_euclid > 15); and
– if the signal-to-noise criterion is not met, then the

segmentation area of the source must be very large
(segmentation_area_euclid > 1200), as defined in Eu-
clid Collaboration: Walmsley et al. (2025).

After this sample selection we are left with 1 142 606 sources
across the three Q1 fields. VIS image cutouts (64×64 pixels)

were created for each of the respective sources, where prob-
lematic images, such as those at the very edge of tiles where a
full cutout could not be created, were removed. This provided us
with images and catalogue data for 1 060 864 sources. We then
apply a 80 : 20 train and test split. Even though the inpainting
and its results are a separate pipeline to the diffusion training,
to prevent any potential data leakage, all of the decision bound-
aries created are based solely on the training set. When showing
classifier performance, all results are from the unseen 20% of the
data. This is to prevent any potential memorisation of the images
from training impacting the results. However, in our analysis, no
obvious differences have been found in the inpainting results be-
tween the two sets, showing that the model is not simply memo-
rising the training set.

To explore the impact point-like sources have on training and
the inpainting process, a second smaller selection was created
that combined all the selections above with the following:

– the source must have a low probability of being star.
(phz_star_prob_phz_class < 0.1); and

– the source must have a low probability of being point-like.
(point_like_prob_euclid < 0.2).

After removing problematic images as before, this smaller data
set contained 794 624 sources.
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3.2. Comparisons with other classifications

Although the training of the diffusion model does not make use
of any labels, it is important to compare the distributions of met-
rics over different source selection criteria. This allows us to
compare both the performance of detecting particular sources
but also to determine what sources or factors may hinder the
pipeline’s ability to classify objects sufficiently.

In particular, we use some of the sample definitions dis-
cussed in Euclid Collaboration: Matamoro Zatarain et al. (2025).
A selection of stars are used from DESI (DESI Collaboration
et al. 2024) and Gaia (Gaia Collaboration: Vallenari et al. 2023;
Gaia Collaboration: Bailer-Jones et al. 2023). The normal galax-
ies sample is also from DESI (DESI Collaboration et al. 2024).
Comparisons are made to selections of AGN and quasars us-
ing Euclid photometry with the IEH_gz and JH_IEY selections
from Euclid Collaboration: Matamoro Zatarain et al. (2025) and
the 2-colour selection from Euclid Collaboration: Bisigello et al.
(2024, hereafter Bisigello24-A) . Additional AGN and QSO se-
lections are used from DESI (DESI Collaboration et al. 2024),
Gaia/Quaia (Storey-Fisher et al. 2024), as well as the 90% reli-
ability WISE sample from (Assef et al. 2018), which is referred
to as R90 for the remainder of the paper.

As is particularly true for AGN and QSO, it is impossible to
create a selection criterion that will identify both with high com-
pleteness and high purity a single population of objects. Instead,
we will use the aforementioned samples to assess contamination
and purity of our method to the extent that is possible.

3.3. Data expectations

Although, by definition, a difference between a galaxy with and
without a bright central component should be found, it is im-
portant to validate that this behaviour can be measured with the
Euclid VIS images. To quantify this difference we analyse the
relationship between the brightest central pixel and its surround-
ing pixels. By producing ratios comparing the central pixel to 1
and 2 pixels wide regions around the central pixel, we form a
rate of change (ROC) metric over sources, as described by

ROC = R2
1 + R2

2 , (5)

where

R1 =
Inputmax − Input1s

Inputmax
R2 =

Input1s − Input2s

Input1s
,

and Input1s and Input2s are the mean values of the surrounding
rings of 1 (total 8 pixels) and 2 pixels (total 16 pixels), respec-
tively. Inputmax is the pixel value of the brightest pixel within the
centre 9×9 pixels.

Pixels surrounding the brightest pixel, which share similar
values to the maximum will produce a ROC value closer to zero,
implying that the source does not feature a prominent active
component. Sources featuring a single very bright pixel, sur-
rounded by fainter pixels will have a ROC value closer to its
maximum of 2. The produced distributions of sources, analysed
according to both IE magnitude and various selection criteria
(Sect. 3.2), are shown in Fig. 3. It is evident that sources with
a high flux point-spread function (PSF) light profile show the
highest ROC values, as expected. This effect is seen in the star
sample and the QSO dominated selections (R90 WISE, Quaia,
DESI-QSO, and Euclid-QSO). On the other hand, spectroscopi-
cally confirmed normal galaxies show very broad ROC distribu-
tions.
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Fig. 4. Distribution differences of the rate of change value over each
class. The narrow peaks from the non-galaxy class are significantly
widened after applying the asinh transformation, causing a large over-
lap between classes.

Table 1. Percentage of galaxies that have rate of change value higher
than the mean rate of change of the other classes. Due to the its ability
to compress the dynamic range of the image, the separability of the
classes becomes more difficult.

Galaxy Overlap Without asinh With asinh
AGN 0.75% 1.15%
QSO 0.20% 7.82%
Stars 0.17% 1.86%

3.4. Addressing the use of asinh for image scaling

Given its prevalence in galaxy morphology-based research (Lup-
ton et al. 2004), the effect of using an asinh transformation on
the data is also investigated. The function, which is often to the
benefit of visual inspections, reduces the differences between
the brightest and faintest pixels. However, when attempting to
differentiate galaxy and non-galaxy sources, the asinh function
becomes a hindrance, causing the distributions to more signif-
icantly overlap, as shown in Fig. 4. To generate a measure for
class overlap we measure the ROC for each image, taking the
mean of each non-galaxy class. We use the percentage of our
true galaxy sample that have a ROC value over the respective
class mean as our overlap metric. The extent of the overlap is
showcased in Table 1, where galaxy overlap increases by at least
a factor of 2.5 and in the extreme case, nearly 50 times more
galaxies overlap with stars. In the following sections of the paper
we will discuss the set up, training and performance of the dif-
fusion model that automatically learn to reconstruct the central
emission expected for the normal galaxy population, and thus by
contrast allow us to identify stars and AGN.

4. Training and inference pipeline

The diffusion and inpainting methods are two distinct pipelines,
one for the initial training of the model and a second for the
actual inpainting. Training the diffusion model makes use of the
whole image and learns to predict what noise to remove at each
timestep. This allows for the generation of novel examples from
the trained distribution.
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Fig. 5. MSE of a random batch at different epochs throughout training.
The opacity of each line indicates how far into the training epochs the
measurement is, with fainter lines at higher epochs. Each training pair
exhibit different behaviour as training progresses, indicating the respec-
tive weighting each put on an image’s pixel brightness. Because each
model was trained on more than solely MSE, these measurements are
only to highlight the raw pixel performance of image recreation at each
stage of training. The black line indicates the final step during training.

4.1. Training the diffusion model

For training, we use 64×64 pixel VIS cutouts for each of the se-
lected sources discussed in Sect. 3.1. We use the training pipeline
described in Dhariwal & Nichol (2021)1 with the loss function

Lhybrid = LMSE + λLVLB . (6)

The hybrid loss is a combination of the mean squared error
(MSE) and the variational lower bound (VLB). Using MSE en-
sures the output pixels of the model are numerically similar to
the original image, maintaining structural and visual consistency
within the generated images.

The first term in 6 is

LMSE =
1
n

n∑
i=1

(ϵi − ϵ̂i)2 , (7)

where ϵ and ϵ̂ are the true and predicted noise added for a
timestep, respectively.

The VLB loss, shown in Eqs. (8) to (10), measures how well
the diffusion process has modelled the underlying distribution
of the image data, ensuring that the image as a whole is coher-
ent and plausible for the data. The VLB loss has a weighting λ
applied so as to not overpower the MSE loss:

LVLB = L0 + L1 + · · · + LT−1 + LT , (8)

Lt−1 = DKL
[
q(xt−1 | xt, x0) ∥ p(xt−1 | xt)

]
, (9)

1 Available at https://github.com/openai/guided-diffusion

LT = DKL
[
q(xT | x0) ∥ p(xt)

]
. (10)

By utilising the Kullback-Leibler (KL) divergence (Kullback &
Leibler 1951), a measure of the difference of two distributions,
the loss acts as a regulariser to prevent simple memorisation
and instead optimising for learning general features and patterns
present in real data.

By combining both losses, the model becomes accurate at
generating realistic data at both the micro (pixel-wise) and macro
(image-wise) levels. This is vital in ensuring the model learns the
dynamics of morphology images through the diffusion process,
allowing it to effectively recreate essential features through re-
painting. Throughout the rest of the paper the loss presented in
Eq. (6) is referred to as the default loss.

Alternative loss

Making use of standard metrics whose primary use-case is data
on a consistent scale, such as 0–255 pixels, may not function op-
timally with the high dynamic range of VIS data. Specifically,
since MSE is not scale invariant, having images that feature pix-
els that are an order of magnitude brighter, results in relative
errors increasing by a square of that difference. This is typically
a benefit as it forces outlier predictions to be severely penalised.
However, with our data, this results in brighter images being dis-
proportionately penalised compared to fainter ones, even if the
predictions are both the same relative distance away from the
true prediction.

To address this, we applied a normalisation to LMSE by divid-
ing each image’s error by its respective maximum pixel value,
which could be from a brighter external source. This allows for
the errors of both bright and faint images to scaled more equi-
tably. The output of this loss is still combined with errors calcu-
lated in LVLB. Throughout the remainder of the paper, we refer
to this variant of the loss as the normalised loss.

To visualise the impact of amending the loss function, with
respect to an images brightness, Fig. 5 shows how the error from
the unmodified MSE changes as the model is trained for longer.
Each line represents the error for a collection of images in a ran-
dom batch, with the increased transparency indicating the pas-
sage of time where the model had been trained on more epochs.
The final epoch of each model is presented by a black line. The
effect of removing point-like sources, as discussed in Sect. 3.1,
is also explored.

An initial observation that can be made with this represen-
tation is the distribution of the number of images of a particular
brightness. By focusing solely on the black lines, where the im-
pact is most noticeable, each vertex on the line represents an
individual image. The more frequent updates the line has within
a range of maximum pixel values, the more images in our data
set exist within that region. As the line has more updates when
the max pixel value is less than one, there are significantly more
images with fainter pixels. This further highlights the dispropor-
tionate penalisation of MSE as it assigns the majority of the error
to a minority of the data.

Although all four models arrive at a similar minimum loss,
and begin the training process near-identically, their respective
behaviour throughout training differs significantly. For the full
data set with the default loss (top left of Fig. 5), training priori-
tises brighter images, leading to some significantly low errors
towards the rightmost data. However, this comes at the expense
of fainter data, where wild fluctuations in error show that the
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Fig. 6. Impact of the diffusion noise scheduler on the median pixel values of the VIS images. The pixels covered in the median pixel calculation
are shown as orange regions overlaid on the example source image in the left most plots. The top row shows how the additional noise impact areas
of the image that are more typically background noise, whereas the bottom row focuses on pixels that will be heavily influenced by the source.
The binning of images according to their S/N shows how different levels of image clarity are affected by the gradual increase of introduced noise.
Images with higher S/N are able to retain more of the original source detail for more timesteps in the scheduler.

model’s output is not very robust when it comes to precise pre-
dictions. This happens even when MSE might suggest low error,
since pixel values below 1.0 result in minimal losses despite the
predictions being relatively incorrect.

For the normalised loss with the full data set (top right), since
the penalisation is shared more fairly across pixel values, it is
the density of images that has the most influence. Early on in
training we can see that as the majority of data reduces in error,
the brightest images remain at near-starting performance. This
continues until the errors of the fainter images become so low
that model is forced to prioritise the bright images. The key dif-
ference here is this only happens after the rest of the images
are at a sufficient standard. The final outcome is fainter images
performing well and the entire scale of images having the same
maximum error.

The two models which feature the reduced training set (bot-
tom row) share similar dynamics during training, regardless of
the loss used. This is largely due to many point-like sources also
being some of the brightest images and therefore the scale of the
data set is reduced. As the most problematic data are removed,
the impact of disproportionate penalisation is significantly re-
duced, allowing the fainter sources to be the focus during train-
ing. After analysing the results from each of the four models,
which will be discussed in Sect. 6.2, we chose to use the model
trained on the full data set using the normalised loss.

4.2. Mask creation

Due to the nature of the application, our aim is to mask out any
suspected AGN without the need to rely on labels ahead of time.
Each mask is positioned so that brightest pixel in the centre of the
source becomes the centre of the mask. Although each image is
centred on the source, various interactions and dynamics allow
for suspected AGN to be offset from the centre. To allow for

some deviation, a 9×9 pixel window around the centre of the
image is used to detect the brightest pixel. This offset allows for
the correct masking of less symmetric sources whilst limiting
the likelihood of masking an adjacent source by mistake. The
masks for each image are assigned dynamically throughout the
data loading pipeline.

Throughout this paper we use a 5×5 pixel mask, unless
explicitly stated otherwise, centred on the calculated brightest
pixel. A 5×5 pixel mask, which covers 0′′.5×0′′.5, allows us to ef-
fectively cover the AGN contribution whilst minimising loss of
the surrounding galaxy structure. Given that the VIS PSF has a
full width half maximum (FWHM) of 0′′.13 (Euclid Collabora-
tion: Mellier et al. 2024), the AGN’s light is spread over multi-
ple pixels. Taking into account the redshift of the galaxy, AGN
within nearby sources (z = 0.01) will cover 4.8 pixels, ensuring
that we can fully encapsulate the core without unnecessary over-
lap of the host morphology. By retaining as much as the host
galaxy information as possible for inpainting, we also reduce
the risk of introducing artificial features into the reconstructed
image.

4.3. Reconstruction rescaling

An important difference with the processing of data in this work
compared to other morphology-based papers is how the data
input into the network are the raw values direct from the sen-
sor, rather than images binned to the standard 0–255 pixel scale
range. As comparisons of individual pixels are being made on
such a small mask, the relative differences become much more
impactful and would likely be lost if values were binned.

One potential issue with this setup is that the libraries used
for training are optimised for images within the standard pixel
range. Although this did not prevent the model from effective
learning the distribution, it does require a rescaling of the gen-
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erated output as the range is restricted to between −1 and +1 to
improve training stability.

We experimented with simply normalising the input data so
that all our images were in the range 0–1; however, due to the
large dynamic range of the data, the faintest pixels ended up
being 10−4. Given the previous discussions on how MSE does
not penalise smaller errors effectively, the model could not ac-
curately recreate sources, outputting a near empty image of very
low pixel values.

Instead, to allow the comparison of the original and outputted
pixel values, we make use of the fact that 99.5% of the image
(4071 of 4096 pixels when using a 5×5 pixel mask) are shared
between the input and output. The following scaling can be dy-
namically applied using each images respective values to allow
the non-masked pixels to be consistent:

outputscaled = output × scale + offset , (11)

where

scale =
max(inputnonmasked) −min(inputnonmasked)

max(outputnonmasked) −min(outputnonmasked)

and

offset = min(inputnonmasked) − scale ×min(outputnonmasked) .

By ensuring that the shared pixels are consistent, the inpainted
pixels can also be correctly adjusted.

5. Background noise versus diffusion noise

It is important for clarification to address the distinctions be-
tween the definition and use of ‘noise’ in diffusion models com-
pared to the traditional understanding of noise in astronomy-
based data. In the context of astronomical imaging, noise refers
to the random fluctuations inherent in observational data, often
caused by e.g. background emission, electronics read-out noise,
and atmospheric disturbances. This ‘background noise’ reduces
the signal-to-noise ratio (S/N) of the image, affecting the ability
to detect subtle details in any analysis.

In contrast, the diffusion process uses an intentional inte-
gration of Gaussian noise to facilitate training of the generative
model. The pixels of image xT , follow the distribution: N(0, I),
rather than following the distribution of the background noise. It
is unclear whether using the background noise as the pure noise
sample would cause issues for the model. Given the aim of the
diffusion process is to denoise a noisy image so that a realistic
one emerges, the original noise should be largely, if not entirely,
removed. Given the background noise constitutes any area that is
not significantly affected by a source, the model may attempt to
remove it which would create an unrealistic image. On the other
hand, it may result in less pixels needing to be denoised, opti-
mising the models ability at learning and processing the source
features. Such an experiment is left for future exploration.

5.1. The effect of signal-to-noise

In machine-learning research, the improvements of generative
models are often demonstrated with data sets that are of high res-
olution and typically noise free. This provides a level of consis-
tency across the full data set, ensuring the benchmarks reflect the
model’s performance under ideal conditions. Whether through
loss functions (as discussed in Sect. 4) or in the practical appli-
cation of the pipelines, how the model behaves on one part of the
data will be similar to another.

However, the difficulty in learning the dynamics of our data
are not consistent throughout the images. Higher signal-to-noise
ratios and lower magnitudes provide higher contrast between the
source features and the background noise, enabling the model to
discern these features more accurately and faster than the low
S/N counterparts. In the context of diffusion models, where the
aim throughout training is to learn the dynamics of noise at dif-
ferent timesteps, the varying S/N of the images could again cause
inconsistencies during training.

Figure 6 explores how this variability in data impacts the
scheduled noise added to the data. By measuring the specific
pixels that are dominantly background noise (top) and those that
are significantly affect by the source (bottom), and further split-
ting images into S/N bins, we show the transformation from raw
pixels to Gaussian noise across the entire scale of our data.

Analysing the top row, we can see that low S/N images are
more significantly affected by the introduction of noise. This
also has an effect much earlier on in the scheduler. The back-
ground noise converges to the diffusion’s pure Gaussian distri-
bution, across all S/N bins, at between 1/2 (t = 2000) and 3/4
(t = 3000) of the total noise steps. When focusing on the pix-
els dominated by the source (bottom row), high S/N images are
fairly unaffected for large parts of the schedule, with the bright-
est images not changing significantly until half way (t = 2000).
It is not until the scheduler is within the final 250 steps that the
brightest images converge to the Gaussian distribution.

To visualise the true effect of this differing behaviour across
S/N, Fig. 7 shows a sample of images throughout different
timesteps. Each image shown is a sample from the respective
S/N bins below. It is clear that the noise scheduling does not per-
form uniformly across the images.

To increase performance of a diffusion model, whether to
recreate a data set more accurately or increase the complexity
of the data you are modelling, the simplest way is to increase
the number of unique denoising steps performed. The impor-
tant part here is the requirement to be unique, as simply adding
more timesteps often results in the additional timesteps (espe-
cially in the latter stages) looking too similar and therefore be-
come just additional overhead. This is the exact reason Nichol
& Dhariwal (2021) implemented the cosine-beta scheduler, dis-
cussed Sect. 2.3, the original linear scheduler produced images
that were pure noise too early into the process.

The images in Fig. 7 show that there are further optimisations
that could be made to improve the scheduler for our data set. For
optimal performance, one should expect the entire grid of im-
ages to behave like those in final 2 or 3 columns. A scheduler
that adapts to the specific S/N of the image would be required
and is left for future work. As our work is specifically using
the reconstruction loss of inpainting as a classifier, the current
scheduler is sufficient for our science goals.

6. Results

To explore the ability of the model at recreating galaxy images,
we apply a variety of different masks to a selection of unseen im-
ages. Figure 8 shows the original image on the leftmost column,
followed by the regenerated images in subsequent columns. With
each mask, shown on the top row, the white area shows the pix-
els that are fixed from the original image whereas the black areas
are generated using the diffusion model.

As our model’s aim is not to generate large collections of
synthetic data, the variety and scientific validity of the produced
galaxies are not put under high scrutiny, instead we only check
that there are no obvious catastrophic mistakes. In the last two

Article number, page 10 of 32



Euclid Collaboration: G. Stevens et al.: AGN identification using diffusion-based inpainting of Euclid VIS images

t = 0

t = 10

t = 100

t = 1000

t = 2000

t = 3000

t = 4000

102 103

SNR of Images

100

101

102

103

104

Nu
m

be
r o

f S
ou

rc
es

Fig. 7. Top: Respective noised images produced by the cosine-beta schedule at different timesteps. Each image is a sample from the respective
signal-to-noise bin directly below it. Due to the scales of pixel values, the introduced noise has a more significant impact on the typically fainter,
low S/N images, leading to the images converging to Gaussian noise much sooner into forward process. The relationship of S/N and rate of
convergence results in the entirety of the top left of the grid of images being pure noise, indicating inefficient training for lower S/N images. This
highlights the difficulty in applying off-the-shelf pipelines to the complexities of real-world astronomical data that feature high dynamic range
and varying quality over images. Bottom: Distribution of S/N of galaxy images. Even though the sample is dominated by lower S/N images, a
non-negligible number of sources with S/N>1000 remains in the training set.

columns, we can see that due to the large mask and fewer pixels
to guide the reconstruction, some of the images produce a visi-
ble boundary around the image where the combination of fixed
pixels and generated pixels are not as seamless as the other im-
ages. Given the masks used for AGN detection are significantly
smaller than those presented in Fig. 8, the fraction of pixels that
the inpainting is conditioned on will be much higher, providing
tighter constraints on the output compared to these examples.

6.1. Inpainting of AGN

For our inpainting, we use a 5×5 pixel mask centred on the
brightest pixel, following the constraints described in Sect. 4.2.
Comparing the expected pixel values with the generated outputs,
Fig. 9 shows the model’s performance. The assumption that the
model will predict a fainter core than the original does appear to
be true, with a near global bias for underpredicting as shown by
the dashed y = x line. The majority of sources behave in a con-
sistent way with the exception of a smaller cluster of sources that
predict more than an order of magnitude fainter than the origi-
nal. This distinct cluster could provide sufficient candidates for
AGN.

The horizontal bar in the leftmost panel of Fig. 9, where the
maximum output value appears to equal one, is a side effect of

Eq. (11). The values themselves are not exactly one, with <1%
of the data fall within ϵ = 0.01 of having a maximum output
of one. There does exist a convergence point in Eq. (11) , where
when the maximum and minimum pixel values of an input image
equal one, the output of the rescaling always equals one; how-
ever, such an image would have all its pixels valued one, and so
is not present in the data. Although there is not a specific conver-
gence point that explains this trend, the majority of the images
that fall on this line occur when the network outputs a maximum
pixel value close to one. However, there are many more images
that have a network output close to one that are not close to this
line, as well as images close to the line without a network output
close to one. We have verified that both point-like and extended
source appear within this line, therefore due to the low number of
sources impacted, we leave more in-depth exploration to future
work.

To further validate the output of the model and show it is
producing realistic outputs, Fig. A.1 shows how the ROC metric
compares between input and output images. The significant over-
lap, especially with respect to peak of each distribution, shows
that the model is accurately recreating the dynamics of the data.

To analyse how the error of each subset of class candidates
have performed, comparisons are made between the original pix-
els and inpainted reconstruction for each image. The MSE of
the pixel values are shown in Fig. 10. Each subset is binned ac-
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Input
Masks

Fig. 8. Applying the inpainting method to a selection of images with example masks (top row). The input image (leftmost column) has the pixels
in white area of each mask fixed, while the diffusion-based inpainting regenerates the black area. Although this model’s aim is not explicitly
large scale image generation, applying masks that cover large selections of the image showcase the model’s ability at creating realistic galaxies.
Ensuring that the generated images preserve a shape and brightness that is consistent with the fixed pixels shows that the model has a good internal
representation of the dynamics of galaxy structure.

cording to its IE magnitude, providing a distinction between the
relative brightness of each image.

There is a clear distribution difference between the respec-
tive class candidates. Stars perform the most consistently across
magnitudes, producing the highest MSEs. There is an inherent
trend for how high the error of the predictions are with the rela-
tive brightness of the classes, with stars and the brightest QSOs
featuring the highest errors across all magnitudes. This is then
followed by QSOs at higher magnitudes, and the lowest magni-
tude AGN candidates. Finally, the galaxy sample, along with the
faintest AGN candidates produce much lower errors. Since these
classes are candidates, it could also highlight the presence of
contamination within the AGN labels. However, the large num-
ber of DESI-detected galaxies showing vastly reduced errors im-
plies that the model does develop a bias for recreating galaxies
with little or no AGN component.

The second important finding is the trend between VIS IE

magnitude and error rate across all classes. The brighter a source

is, the higher its recorded MSE. This matches the initial assump-
tions of the method, where, as the sources increase in magnitude,
differences in brightness values across galaxies become harder
to differentiate. This leads to fainter potential AGN candidates
looking more similar to a normal galaxy, causing the inpaint-
ing to reconstruct more accurately and therefore less likely to
be included in our selection. However, the relationship between
brightness and error is once again more influenced by the scale-
variant nature of MSE. However, the lack of significant overlap
for many of the selections with the galaxy class still make this
metric useful.

To showcase how the performance of the inpainting method
impacts the overall image, Fig. 11 presents the input, output and
residuals for a selection of sources, including a close up of the
masked area both before and after inpainting. It is clear to see
how bright central cores can be entirely removed with inpainting,
being replaced by regions that are consistent with the surround-
ing pixels. The model is also able to recreate images that do not
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Fig. 9. Comparison between the original masked pixels and the pixels of the generated output. The model demonstrated a consistent prediction
along the gradient of y = x (dashed line), with a bias for underpredicting the true value. A secondary cluster, also following the same gradient is
shown to reduce the pixel values by a factor of 10, implying an inherent difference in the input image causing the model to behave different. This
collection of sources could be prime AGN candidates using our model.
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Fig. 10. MSE of the 5×5 pixel mask from the input and generated output. AGN selection show a skew toward higher errors, especially for lower
magnitude sources. The grey histogram shows the distribution of the whole data set, showing how the errors of images not captured in these
selections compare. The median value for each IE magnitude bin is shown in the respective vertical line.

feature any significant core accurately. This shows the model has
a good internal representation of galaxies and how they should
behave.

6.2. Max pixel difference ratio

Although reconstruction error allows stars and a subset of AGN
to stand out from the rest, a substantial overlap between sus-
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Fig. 11. Example outputs from the repainting model. A 5×5 pixel mask, centred on the brightest pixel within the central region of the input image
is masked and repainted. The unmasked region is used to condition the generation of the new pixels. Each example shows (from left to right): the
input image with its corresponding Euclid ID; the output image (same scale as input); the residuals of the generated image; the masked pixels
from the original image; and the inpainted pixels of the output image. The first three columns are the original 64x64 cutout size, while the last two
column are the 5x5 masked region.

pected AGN and DESI-classified galaxies remains, especially at
higher magnitudes. Even though measured on a pixel-by-pixel
scale, MSE averages away specific pixel differences, leading to
less nuanced differences between input and output. As an exam-
ple, if the reconstructed image ended up being the correct values

but just shifted by one pixel, this would be penalised heavily un-
der MSE. From the perspective of this paper, such a scenario
would imply that the model knew a bright pixel was valid and
therefore, should not be penalised. Another example would be if
only the brightest pixel is different in the reconstruction. MSE
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Fig. 12. Measured ratio between the maximum pixel within the masked pixels of the input image, with the max of the pixels in the output. The
galaxy sample is the only sample not to feature a right skew and therefore allows a threshold between this class and the rest. The brightness
differences caused by the varying magnitudes do not significantly differ the ratios within each class selection. The grey histogram shows the
distribution of the whole data set, showing how the ratio of images not captured in these selections compare. The median value for each IE

magnitude bin is shown in the respective vertical line.

would significantly reduce the impact of this measurement, po-
tentially scoring similar to a source that gave small errors in ev-
ery pixel within the mask.

To ensure such cases are not overlooked, we measure the
pixel value ratio between the brightest pixel from the input mask
and the brightest pixel from the reconstruction. As shown in
Fig. 12, the produced distributions show a much tighter spread
of values for many of the AGN selections, with a skew towards
higher scores. The majority of the galaxy subset produce a ratio
less than 10, whereas a large population of suspected AGN from
each selection feature a larger ratio.

Another important difference between this metric and MSE
is how the results are relative, reducing the impact of magnitude
on the recorded values. Many of the high density peaks remain
consistent, even as the magnitude of the sources increase. This
implies that this metric is more robust at detecting fainter AGN
than MSE.

The distribution also highlights the scale of the extreme val-
ues with many sources showing pixel values approaching 100
times greater than their counterparts. Exploring these large dis-
parities can provide insights into the types of sources that are
significantly sensitive to the model’s capabilities. Sources pro-
ducing the highest values for the ratio are those where the recon-
struction produces a cutout that is significantly fainter than the
original image. As can be seen in Fig. B.1, this space is domi-

nated by point-like objects. Having the sharp falloff of pixel in-
tensity in such a small area leads to the mask covering the ma-
jority, if not the entirety of the source. When the model attempts
to reconstruct the missing pixels, it generates values that are co-
herent with the surrounding pixels. In these cases, the best match
for empty space being more empty space.

The behaviour of the previous examples match with the ex-
pected behaviour of the model and the initial assumptions of the
paper. Applying inpainting to this task is expected to produce
outputs that are similar to, or produce a flattened light profile
of the original pixels. However, there exists a subset of sources
that exhibit the opposite behaviour and generate a much brighter
collection of pixels. Figure B.2 shows examples of such sources.
When analysing the sources that exhibit this behaviour we find
that they are overwhelmingly low S/N images. Given the differ-
ence in behaviour of these images during training, as shown in
Fig. 7, it is clear this has had an impact on the model’s behaviour
with these types of images.

Because we would like to limit this behaviour, we analyse
how many of the unseen sources produce this type of output. The
number of sources whose max pixel difference ratio is less than
one for each of the four models discussed in Sect. 4, are shown
in Table 2. The normalised loss helps significantly in reducing
the number of sources exhibiting this behaviour. The normalised
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Fig. 13. Threshold produced between the top right cluster of points and the largely galaxy dominated cluster. The coloured dots represent the VIS
IE magnitude for each positive candidate for the respective selections. The grey dots show the values of all the images in the data set. The majority
of the sources within each of the non-galaxy classes are captured with this simple linear boundary, allowing for high recall across all classes. The
sources not captured are typically those of higher VIS magnitude and therefore fainter. The tail formed, where sources exhibit a maximum pixel
difference ratio < 100, show outlier sources which have predictions that are brighter after inpainting.

Table 2. The number of sources that produced brighter pixels in the
masked area after repainting. The normalised loss produces a clear ad-
vantage in reducing the number of erroneous results.

Data set Loss function
Default Normalised

All data 55 008 (6.49%) 33 075 (3.90%)
No point-like 52 313 (6.17%) 39 507 (4.66%)

loss trained on the full data set was selected as our applied model
due to it further reducing the number of outlier predictions.

6.3. Morphology-based performance

Given the variety of shapes and sizes of objects that will be wit-
nessed using Euclid, it is important to verify that the model is
able to handle the complexities of different galaxy morpholo-
gies. Utilising the refined morphology classifications provided
from Euclid Collaboration: Walmsley et al. (2025), we provide
examples of edge-on (disk-edge-on_yes_fraction > 0.5),
spiral (has-spiral-arms_yes_fraction > 0.7), and mergers
(merging_merger_fraction > 0.3) in Figs. C.1, C.2, and C.3,
respectively.

These images show how our diffusion model and the in-
painting pipeline effectively adapt to different morphologies.
For edge-on in particular, the region of bright pixels within the
masked area is often narrower than the mask itself. Despite this,
the inpainting correctly preserves the orientation of the features
rather than uniformly filling the entire masked area with bright
pixels.

6.4. Creating a classifier

Due to the difference in distributions between the two metrics,
any non-overlapping cases can be found when used in combina-
tion. As seen in Fig. 13, there is a cluster of sources in the top
right. The key aspect of this cluster is its clear boundary from
the DESI galaxy selection. This is vital for ensuring high reli-
ability in classifications. We create a simple decision boundary
between the two clusters of points, as shown in Fig. 13. Although
a more fine-tuned boundary would certainly be possible, espe-
cially when incorporating a further machine-learning model, it is
important to show the benefits of utilising the inpainting method
through only its error metrics. The equation of our linear bound-
ary is y = −0.01x + 9.
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Fig. 14. Variations in the output error from repeat samples of the same
fixed pixels. Over seven separate inpainting runs, the model shows con-
sistent median error when normalised by each respective magnitude
(top panel). The variance in the output errors is less consistent with the
brighter, lower magnitudes providing more robust inpainting than those
of fainter images.

6.5. Variance of reconstructions

Given the stochastic nature of the diffusion model pipeline, it is
important to verify that any produced results can remain consis-
tent if applied to the wider data set. Although the nonmasked
region of the images will remain fixed over repeat samples, the
random walk performed in the inpainting procedure could lead
the samples to a different area of the search space. This would
result in a different, but possibly equally plausible, output image.

We perform the inpainting pipeline seven separate times on
the same subset of the data. To ensure that any low variance in
samples is not caused by the model simply ‘remembering’ the
true image from its training examples, all resampling is applied
on images the model has never seen before. The mean and vari-
ance over a normalised by brightness MSE are shown in Fig. 14.

The top figure shows that irrespective of magnitude, the
model achieves similar relative median error across all images,
highlighting the impact of the normalised loss throughout train-
ing. However, the difference in the scheduler over images of
different quality and brightness is made evident in the bottom
figure. The consistency of generated outputs vary drastically as
fainter (and therefore lower S/N) images produce widely differ-
ent pixels when resampled.

6.6. Comparing to other criteria

It is important to compare our AGN and QSO predictions to
more traditional methods that are also able to utilise only the
image data. Given the assumption of our model that sources con-
taining an AGN will feature a bright central component with a
sharp falloff in the galaxy’s light profile, comparing to Sérsic
flux and point spread function (PSF) flux measurements is cru-
cial because they capture the key concepts of our assumptions.
The Sérsic flux helps quantify galaxy light distribution and dif-
ferentiate an AGN’s central brightness from the galaxy’s struc-
tural brightness. PSF flux isolates the galaxy’s core, capturing
point-like behaviour. The distribution of sources with these pa-
rameters is shown in Fig. 15. The equation of this linear bound-
ary is y = 2x − 1.

Our second comparison is with the original rate of change
metric used in Sect. 3.3. As we were able to see a clear distinc-
tion between the galaxy class and the others, it is important to
verify how such a metric performs as a classifier. This is espe-
cially true given such a metric can be generated from the raw
image, with no machine-learning model required. The boundary
for this classifier is x = 0.75.

The test set scores for each respective selection is shown in
Fig. 16, with the collated results for stars, galaxies, AGN and
QSOs shown in Fig. D.1. All predictions are on images that were
not used during training, nor used in the creation of any of the
decision boundaries for the classifiers.

Given the variety and differences in the selection methods,
there is an inherent incompleteness and potential for contamina-
tion, therefore our analysis focuses primarily on achieving suffi-
ciently high recall. High recall ensures that our method is capa-
ble of identifying the broad range of AGN and QSO sources that
are detectable through existing techniques. A high recall met-
ric indicates that our classifier effectively captures the variety of
sources each respective selection criterion is designed to detect.

While precision is also a consideration, our primary metric of
success in this context is the diffusion model’s recall. Having the
ability to recover a large fraction of known AGN and QSO types,
across various selection methods, validates the robustness and
comprehensiveness of our classifier. Due to differing constraints
for each of the selections, we split the analysis to allow for a
more representative comparison.

Galaxies

Our galaxy selection is determined by the DESI spectral type
classification SPECTYPE=GALAXY (DESI Collaboration et al.
2024), with AGN contaminants removed following the pro-
cedure detailed in Euclid Collaboration: Matamoro Zatarain
et al. (2025), hereafter called MZ25. Negative instances are
formed from the remaining spectroscopically determined labels
SPECTYPE=STAR and SPECTYPE=QSO (DESI Collaboration et al.
2024) along with the contaminants removed from the original
SPECTYPE=GALAXY selections.

The predictions from each classifier for whether a source is
a normal galaxy is simply the inverse of the boundary’s origi-
nal predictions. As Fig. 16 shows, all classifiers capture nearly
all galaxies across every magnitude bin. The precision scores
also match extremely closely between classifiers, indicating sim-
ilar contaminants proving difficult, especially for the brighter
sources. Such contaminants can be seen in Figs. 13 and 15,
where stars and DESI-selected QSO fall outside the boundaries.

The ability to separate normal galaxies from other extra-
galactic or stellar objects has benefits for both groups of data.
Being able to create a pure galaxy sample is vital for the precise
measurements needed for cosmology, as well as to further our
understand of dark matter and dark energy, a primary object of
the Euclid mission (Euclid Collaboration: Mellier et al. 2024).

Stars

The star selection is made up of the positive instances of
Euclid selected (star_candidate_euclid, MZ25), DESI-
selected (SPECTYPE=STAR, DESI Collaboration et al. 2024),
and Gaia-selected stars.

Due to the assumptions made for this method, the inciden-
tal capture of stars within our classifications is an expected out-
come. The near-perfect recall shows that our classifier is able to
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Fig. 15. Comparing the PSF total flux with the Sérsic flux provides a clear separation between the galaxy class and the majority of the non-galaxy
selection. This allows for a simple linear boundary for classifying potential AGNs, with the majority being point-like objects. However, is most
apparent with selections from AllWISE R90 and X-ray-selected AGN that there are many sources that would not be selected using these features.
The coloured dots represent the VIS IE magnitude for each positive candidate for the respective selections. The grey dots show the scores of all the
images in the data set.

capture stars well. This performance is beneficial when attempt-
ing to capture a high purity galaxy sample as discussed in the
previous section. However, as other works such as Euclid Col-
laboration: Matamoro Zatarain et al. (2025) have shown, there
are metrics to mitigate the contamination of stars. This is shown
in practise by the high precision, highlighting how we are able
to isolate this star selection from other point-like sources.

However, a significant number of stars are likely to remain
in our sample. Therefore, for all subsequent selections, we apply
the cut phz_star_prob_phz_class< 0.3, to predictions of all
classifiers to minimise the contamination of stellar sources.

Euclid-detected QSOs

The Euclid photometric-based selections for QSOs in-
clude IEH_gz and JH_IEY , as described in MZ25, and
the Bisigello24-A 2-colour selection (Euclid Collaboration:
Bisigello et al. 2024). This subset consider only sources with
MUMAX_MINUS_MAG ≤ −2.6, a parameter that indicates point-
likeness (Euclid Collaboration: Romelli et al. 2025).

For the IEH_gz and JH_IEY selections, we capture around
90% of the candidate QSOs. This coverage remains consistent
across the available magnitudes. The performance compared to

the other classifiers is similar, with ROC capturing a small per-
centage more sources, but not different enough to be significant.

The 2-colour selection proved harder to match for all classi-
fiers, with recall dropping to 0.6 for the faintest objects. Again,
no significant differences are seen between the classifiers.

DESI-selected QSOs

As these sources are assumed point-like, applying the above
MUMAX_MINUS_MAG limit would be reasonable. However, due
to the improvements in spatial resolution from DESI, at about
1′′, to Euclid’s now 0′′.2, some sources that appeared point-like
through DESI, now appear extended. Therefore, to ensure all po-
tential sources are found, we do not apply the restriction to this
subset.

This selection provides the first evidence of significant dif-
ferences within the candidates for each classifier. The inpaint-
ing classifier is able to capture a significant amount of the se-
lection compared to the other classifiers. Throughout all mag-
nitude bands, the PSF and Sérsic flux classifier has worse re-
call. Whereas the diffusion model has higher coverage over
the brightest sources (lowest magnitudes), the ROC classifer
matched more candidates in the fainter sources.
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Fig. 16. Precision and Recall scores for the diffusion-based AGN predictions (solid line). As the various selections we compare against are not
complete, sufficiently high recall allows us to see which traditional methods our selection overlaps with, indicating the types of sources our method
is most appropriate for.

Gaia-detected QSOs

For the Gaia-detected QSOs, we use the Quaia selection (Storey-
Fisher et al. 2024). The subset consists of positive instances
(qso_quaia, MZ25), with negative instances from Gaia-
detected galaxies (in_galaxy_candidates_gaia, MZ25) and
stars (star_candidate_gaia, MZ25). We once again apply the
MUMAX_MINUS_MAG restriction to the sources.

After the initial magnitude bin, our classifier was able to
match with a high proportion of the Quaia-selected QSOs. The
other two classifiers achieved equal recall scores, but in the
faintest detected sources our classifier was able to match with
an additional 20% of sources.

The particularly poor precision for this selection across all
the classifiers is due to the considerable imbalance between pos-
itive and negative predictions. With only 0.5% of the Gaia-
detected sources being Quaia candidates, selecting more than
just the candidates is likely, significantly impacting the preci-
sion.

AllWISE R90 AGN

Utilising WISE-detected sources allows us to verify our ability
to select candidates that may have been obscured by dust. Using
the selection criteria derived by Assef et al. (2018), we compare

our candidates to the 90% reliability (R90) selection which is a
high purity AGN sample.

The Assef et al. (2018) selection provides a more significant
test for the classifiers due to no restrictions on point-like sources,
as well as fewer contaminants that may have unintentionally im-
proved the overlap of candidates. Similarly to the DESI-selected
QSOs, our classifier shows a higher coverage than the other de-
cision boundaries on the brightest sources. In the fainter sources,
the diffusion and ROC classifiers are matched. Given the purity
of the R90 selection, a large sample of suspected AGN remained
unmatched by any of the classifiers, with the most matched mag-
nitude bin achieving 80%.

Much like the Gaia-detected QSOs, the small fraction of
candidates compared to the full sample of possible sources leads
to many of the classifiers selecting sources outside the R90 selec-
tion. With a completeness of only 17% (Assef et al. 2018) there
will be many mid-infrared AGN in the negative sample, which
the classifiers are likely finding.

Xray-selected AGN

We compare our candidates to the X-ray selection from the work
by Euclid Collaboration: Roster et al. (2025). The positive in-
stances are when the calculated probability that the source is a
galaxy is sufficiently low (Gal_proba_roster < 0.2, MZ25).
The negative instances are sources with Gal_proba_roster
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Table 3. Recall, precision and area under the curve (AUC) scores for each of the classifiers. Each selection we compare to is split into brighter and
fainter sources, IE < 20 and IE ≥ 20 respectively. Bold scores indicate significant improvements over the other classifiers (increase of atleast 0.05).
The PSFFLUX versus SérsicFLUX results have been shortened to PSF–S.

Recall Precision AUC
Selection 18 < IE < 22.5 Ours PSF–S ROC Ours PSF–S ROC Ours PSF–S ROC

Stars < 20 0.99 0.99 1.00 0.96 0.97 0.96 0.50 0.51 0.50
≥ 20 0.97 0.98 1.00 0.84 0.85 0.84 0.51 0.53 0.50

Galaxy DESI < 20 1.00 1.00 1.00 0.74 0.73 0.73 0.64 0.63 0.64
≥ 20 0.98 1.00 0.99 0.90 0.90 0.91 0.73 0.72 0.75

QSO DESI < 20 0.77 0.57 0.63 0.18 0.14 0.15 0.84 0.75 0.77
≥ 20 0.90 0.84 0.96 0.59 0.67 0.62 0.93 0.91 0.96

QSO QUAIA < 20 1.00 0.98 0.98 0.01 0.01 0.01 0.59 0.58 0.58
≥ 20 1.00 0.80 0.80 <0.01 <0.01 <0.01 0.51 0.41 0.40

AGN Xray < 20 0.64 0.48 0.61 0.74 0.73 0.74 0.63 0.59 0.62
≥ 20 0.51 0.38 0.53 0.86 0.86 0.87 0.53 0.51 0.55

AGN R90 AllWISE < 20 0.68 0.57 0.63 0.02 0.02 0.02 0.68 0.63 0.66
≥ 20 0.59 0.45 0.60 0.03 0.02 0.03 0.75 0.68 0.75

QSO IEH_gz < 20 1.00 1.00 1.00 0.02 0.02 0.02 0.50 0.50 0.50
≥ 20 0.94 0.92 1.00 0.05 0.05 0.05 0.49 0.47 0.50

QSO JH_IEY < 20 1.00 1.00 1.00 0.01 0.01 0.01 0.50 0.50 0.50
≥ 20 0.95 0.91 1.00 0.04 0.04 0.04 0.50 0.46 0.50

QSO Bisigello24-A < 20 1.00 0.99 1.00 0.02 0.02 0.02 0.50 0.50 0.50
≥ 20 0.96 0.97 1.00 0.03 0.03 0.03 0.50 0.50 0.50

≥ 0.2. Only sources with detection in X-rays are included in
the results.

The main difference with the results of the X-ray-detected
AGN is how the precision outperforms the recall across nearly
every magnitude bin. This is due to low number of X-ray sources
compared to the other selections. The recall performance be-
tween the diffusion model and the ROC classifier is very similar,
with the PSF and Sérsic flux classifier again struggling to match
as many candidates as the other two.

Each of the selection criteria we compare with captures
distinct subsets of the AGN and QSO populations, influenced
by specific observational biases and methodological constraints.
Therefore, it is only when collating these selections and by iden-
tifying trends and overlaps in the labels, that we can be confident
that we sufficiently cover the spectrum of possible AGN.

Table 3 summarises the scores shown in Fig. 16. We com-
bine the results into two IE magnitude bins 18–20 and 20–22.5,
separating into brighter and fainter sources respectively. Due to
similar scores in many of the selections, we highlight in bold any
scores that outperform the other classifiers by atleast 0.05.

The results show that the diffusion method achieves high
recall scores across all tested selections, most notably outper-
forming the other classifiers in the bright QSO DESI, faint QSO
QUAIA and bright R90 selections. In other selections, it per-
forms comparably to the ROC classifier, with both classifiers of-
ten significantly outperforming the PSFFLUX versus SérsicFLUX
classifier.

6.7. Decomposition of the AGN Component

Given our model’s ability to classify suspected AGN, it is not
unreasonable for the reader to assume that the residuals of the
repainting process and the output image can independently rep-

resent the AGN and galaxy components. Although utilising in-
painting for decomposition is a worthwhile future research di-
rection, the validity of the residuals to accurately represent the
AGN component for further scientific analysis have not been
tested and as such cannot be used. More significant exploration
of which mask to use will also be vital for such a use-case. A
mask that adapts its size and shape for each input image will
likely be necessary. For a deep-learning approach applying AGN
decomposition on Euclid data, readers are referred to Euclid
Collaboration: Margalef-Bentabol et al. (2025), hereafter called
MB25, whose method provides AGN fraction (FAGN) measure-
ments that we use to analyse our AGN candidates.

The subset of Q1 used within this work and the subset tested
in MB25, feature an overlap of 425 781 sources. The confusion
matrix for AGN predictions between the diffusion classifier and
sources with an FAGN ≥ 0.2 (AGN candidate for MB25) are
shown in Table 4. The majority of sources (∼ 95%) are in agree-
ment by both methods not to be AGN candidates. With the re-
maining sources, only ∼ 10% are in agreement, with over five
times more AGN candidates selected by MB25. When compar-
ing all the AGN candidates selected using their respective sub-
sets of data, this number reduces down to 3.5 times more candi-
dates selected by MB25 than the diffusion model (Table 5).

The left panel of Fig. 17, shows the AGN candidates selected
by the diffusion, but predicted to have low AGN fraction by the
model in MB25. Whereas the right panel shows the AGN frac-
tion of agreed sources between the two methods. Fig. D.2 shows
where the MB25 selections are located on the inpainting metrics.
As shown in Table 4, many of the MB25 sources are not located
above the diffusion threshold. Of the sources that lie above the
threshold, the majority show an FAGN > 0.5. This implies that
the FAGN selection is more sensitive to fainter AGN.

Comparing the predictions for each of the Euclid-based se-
lections in Fig. 18, we can see that our diffusion model covers
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Table 4. AGN candidate comparison between this work and the AGN
fractions predicted by MB25. There is an overlap of 425 781 sources
between the subset of Euclid Q1 sources selected by both methods.

Matched sources MB25 AGN MB25 Non-AGN
Diffusion selected 2 263 1 331

Diffusion non-selected 19 758 402 429

Table 5. Total number of AGN candidates from each morphology
method and their respective data sets. The majority of AGN candidates
from the two respective data sets are sources not used within the other’s
data set.

Method Diffusion MB25
Total AGN Candidates 16 053 57 874
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Fig. 17. Diffusion model AGN candidates, colour-coded according to
the AGN fraction of MB25. Left: not identified as AGN by MB25
(FAGN < 0.2), and right: AGN candidates selected by MB25 (FAGN ≥

0.2).

areas of the colour space that the photometry-based selections do
not. Being able to select both bluer galaxies, as captured by the
photometry selections (MZ25; Euclid Collaboration: Bisigello
et al. 2024), and the much redder sources captured by MB25,
shows the versatility of the method, highlighting its effectiveness
across different galaxy populations.

7. Summary and conclusions

In this paper, we have used a diffusion-based inpainting model to
identify AGN and QSOs using VIS images from the Q1 data (Eu-
clid Quick Release Q1 2025) from the Euclid telescope. Our ap-
proach focuses on inpainting the brightest pixels within the cen-
tre of a galaxy, and employs a novel thresholding approach based
on the reconstruction errors to differentiate AGN and QSOs
from the rest of the galaxy population. Using only VIS images,
our method can generate a large, reliable sample of optically-
selected AGN, without the requirement of AGN labels ahead
of time. Utilising a standard training and inference pipeline
with minimal modifications for astronomical data, our method
demonstrates high recall and significant overlap with AGN se-
lections obtained through more traditional methods, across var-
ious wavelengths including optical, near-infrared (NIR), mid-
infrared, and Xray.

7.1. Considerations on training and inference costs

Our DDPM inpainting model required approximately 50 hours
of training using a single Nvidia A6000 GPU, which aligns with
expectations for models of similar scale and architecture. How-
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Fig. 18. Comparison of our diffusion model selections with those from
photometry-based selections (MZ25; Euclid Collaboration: Bisigello
et al. 2024) and the selections from MB25. Although all the diffusion
selected sources are plotted, to improve clarity, only a representative
subset of the other selections are shown. The photometry-based selec-
tions are limited to much bluer sources, highlighted by the dotted line
showing the cut introduced in MZ25.

ever, the inference pipeline is heavily constrained by memory
rather than computation, as demonstrated by its near-linear scal-
ing – the inpainting of 1024 and 8192 images took roughly the
same amount of time when sufficient GPU memory was avail-
able. This memory constraint is due to the need to store and it-
eratively manipulate large intermediate tensors during inference.
Whilst training, although more computationally expensive, has a
more structured process where gradients are computed and ac-
cumulated in a predictable manner.

With an expanded compute resource (4× Nvidia H100
GPUs), we are able to inpaint just over 2.5 million images per
day. As we have shown in Sects. 2.3 and 4, our model archi-
tecture and hyperparameters remain largely unmodified from
their standard configurations. Optimisations tailored explicitly
for astronomical-based data, especially in regards to the noise
scheduler, will significantly reduce the number of iterations and
inference time required to process each image. For example,
Fig. 7 shows an opportunity for a two- to four-fold speed-up in
timesteps when correcting for the high number of pure Gaussian
noise images alone.

The results from Sect. 6.6 show that although our predictions
have a significant overlap with many of the selections presented,
it also highlights that the ROC classifier produces similar overlap
performance. Given this boundary is formed by a simple calcu-
lation on the data, rather than requiring a complex model, it may
present itself as the preferred method. However, it must be reiter-
ated that the current pipeline has had minimum optimisations for
the data and the classification task. Therefore, the ROC classifier
serves as a fundamental baseline for comparison in our study.
Future enhancements to the model are expected to not only im-
prove the accuracy of identifying AGN candidates but also refine
our reconstruction error maps for better analysis of prospective
AGN components. The other classifiers do not offer the same po-
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tential for improvement, making the diffusion method the most
promising moving forward.

Our key contributions and conclusions include the following

– Compared to traditional colour-selection criteria, the ap-
proach is attaining high coverage in AGN candidates while
achieving near-perfect separation of galaxies not featuring an
AGN component. Reliably separating these different sources
allows for creation of subsets with high purity which are vital
for the cosmological objectives of the Euclid mission.

– By demonstrating that VIS images alone can generate reli-
able and extensive samples of AGN and QSOs, our method
showcases the impressive capabilities of Euclid’s imaging.
Given the future of the mission will cover 14 000 deg2, the
ability for AGN identification using only VIS allows for the
possibility of some science aims to be met without the im-
mediate need for integration of multiple data sources. This
can significantly reduce time and complexity for processing
and analysing the data.

– The application of diffusion models with minimal adap-
tations for astronomical imaging highlights the potential
for the use of more advanced machine-learning tools and
pipelines for future Euclid data, as well as other scientific
data sets. The ability to leverage models that can process
large volumes of data efficiently, without costly and exten-
sive specialised tuning, will be vital as scientific data sets
continue to increase in size and complexity.

– Although our model performs well without significant opti-
misation for our use case, we provide insights into the be-
haviour of the model given the challenges presented with
astronomical imaging. We show how the assumptions of
machine-learning literature can result in non-optimal train-
ing, especially when it comes to the noise scheduler and
training losses. By highlighting these inefficiencies, we can
see where progress can be made in both astronomy and
machine-learning domains.

– Because this is the first use of these pipelines for such an
application, we have routinely provided guidance on im-
provements and next steps to refine this work. Enhancing the
model’s precision, improving the efficiency of both training
and inference, as well as expanding its capabilities, will only
increase its impact.

In conclusion, our results demonstrate the feasibility and
effectiveness of using diffusion-based inpainting for AGN and
QSO identification. The ability to use VIS images exclusively for
selecting these candidates, provides a potential strategic flexibil-
ity to the Euclid mission whilst aiding in reducing the reliance
on complex multispectral data integration. By proving the utility
of applying our pipelines to the task of AGN identification, we
believe it can be expanded and can significantly contribute to a
broader range of astronomical applications, such as identifying
gravitational lensing or finding transient objects.
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Fig. A.1. Comparison of the ROC between the original images and the
inpainted images. The similarity in the peak of the distributions shows
that the model is able to accurately recreate the distribution of the data.

Appendix A: Reconstruction metrics

Figures Fig. A.1 show the differences in the rate of change mea-
surement between input images and the inpainting output.

Appendix B: Extreme examples

We present output examples from the inpainting pipeline where
pixel values deviate significantly from the expected input pix-
els. Figure B.1 highlights much fainter pixels, while Figure B.2
shows much brighter ones.

Appendix C: Morphology examples

We show output examples from various morphology types to
showcase how the diffusion model adapts to different galaxy
shapes. Edge-on galaxies, spirals and mergers are shown in
Fig. C.1,Fig. C.2 and Fig. C.3, respectively.

Appendix D: Additional results

We present collated results for each of the star, galaxy, AGN and
QSO selections in Fig. D.1. In Fig. D.2, the MSE and max ratio
scores of all the MB25 selections as shown, indicating our diffu-
sion model is more sensitive to selecting brighter FAGN sources.
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Fig. B.1. Examples of sources that achieved a very high maximum pixel difference ratio.

Article number, page 27 of 32



A&A proofs: manuscript no. output

-533335928292947799

-572908854498558752

-612094457506896511

-641090484491880983

2669241409648633901

2726624396678638211

Fig. B.2. Examples of sources that achieved a very low maximum pixel difference ratio.
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Fig. C.1. Examples of inpainting on edge-on sources.
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Fig. C.2. Examples of inpainting on spiral sources.
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Fig. C.3. Examples of inpainting on mergers.
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Fig. D.1. Precision and recall scores for the diffusion-based AGN pre-
dictions (solid line). All of the respective selection are collated into their
common classification types.
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Fig. D.2. MB25 selection on our inpainting metrics. The FAGN values
are provided by MB25. All shown sources have an FAGN > 0.2. A large
selection of sources within the MB25 selection are not located within
our boundary. Of the sources that are within our boundary, many exhibit
higher FAGN.
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