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ABSTRACT

Active galactic nuclei (AGN) are an important phase in galaxy evolution. However, they can be difficult to identify due to their varied observational
signatures. Furthermore, to understand the impact of an AGN on its host galaxy, it is important to quantify the strength of the AGN with respect
to the host galaxy. We developed a deep learning (DL) model for identifying AGN in imaging data by deriving the contribution of the central
point source. The model was trained with Euclidised mock galaxy images in which we artificially injected different levels of AGN, in the form of
varying contributions of the point-spread function (PSF). Our DL-based method can precisely and accurately recover the injected AGN contribution
fraction fPSF, with a mean difference between the predicted and true fPSF of 0.0078 and an overall root mean square error (RMSE) of 0.051. With
this new method, we move beyond the simplistic AGN versus non-AGN classification, allowing us to precisely quantify the AGN contribution and
study galaxy evolution across a continuous spectrum of AGN activity. We apply our method to a stellar-mass-limited sample (with M∗ ≥ 109.8 M⊙
and 0.5 ≤ z ≤ 2.0 ) selected from the first Euclid quick data release (Q1) and, using a threshold of fPSF > 0.2, we identify 48 840 ± 78 AGN
over 63.1 deg2 (7.8 ± 0.1% of our sample). We compare these DL-selected AGN with AGN selected in the X-ray, mid-infrared (MIR), and via
optical spectroscopy and investigate their overlapping fractions depending on different thresholds on the PSF contribution. We find that the overlap
increases with increasing X-ray or bolometric AGN luminosity. We observe a positive correlation between the luminosity in the IE filter of the AGN
and the host galaxy stellar mass, suggesting that supermassive black holes (SMBHs) generally grow faster in more massive galaxies. Moreover,
the mean relative contribution of the AGN is higher in the quiescent galaxy population than in the star-forming population. In terms of absolute
power, starburst galaxies, as well as the most massive galaxies (across the star-formation main sequence), tend to host the most luminous AGN,
indicating concomitant assembly of the SMBH and the host galaxy.

Key words. Galaxies: active – Galaxies: statistics

1. Introduction

Active galactic nuclei (AGN) are widely considered to be a cru-
cial phase in the evolution of massive galaxies (Zhuang & Ho
2023), and may also play a role in the growth and regulation
of low-mass galaxies (Mezcua et al. 2019; Greene et al. 2020).
They are powered by accretion of matter onto the supermassive
black holes (SMBHs) at the centres of galaxies and can emit ra-
diation across the whole electromagnetic spectrum (Ueda et al.
2003; Padovani et al. 2017; Bianchi et al. 2022). AGN can be
broadly divided into categories, such as type I and type II AGN
(Antonucci 1993; Urry & Padovani 1995), depending on their
observational characteristics. Type I are unobscured AGN which
are luminous in the ultraviolet and optical. Type II are obscured
AGN, in which the dust and gas torus surrounding the central
engine can conceal their emission at certain wavelengths. There-
fore, they need to be selected using different methods (Hickox
& Alexander 2018), such as X-ray luminosity or colour crite-
ria. While methods based on optical colours are affected by dust
obscuration, and therefore will be biased against dust-obscured
sources, methods based on mid-infrared (MIR) colours will tend
to select dust-obscured AGN. AGN selected based on X-ray
emission can include both obscured and unobscured AGN, al-
though the soft X-ray selection tends to be biased toward unob-
scured sources. However, X-ray selection can be biased towards
more massive galaxies (Aird et al. 2012; Mendez et al. 2013;
Azadi et al. 2017).

There exists a close connection between the assembly of the
SMBH and the formation and evolution of its host galaxy (Ko-
rmendy & Ho 2013). This is seen by various scaling relations
between galaxy physical properties (such as stellar velocity dis-
persion, bulge luminosity, and bulge mass) and the mass of the
SMBH (Gültekin et al. 2009; Beifiori et al. 2012; Graham &
Scott 2013; McConnell & Ma 2013; Läsker et al. 2014; Shankar
et al. 2016). To better measure these correlations and trace their
⋆ e-mail: B.Margalef.Bentabol@sron.nl

evolution with time, there is clearly a need to accurately sepa-
rate the light contribution from the accreting SMBH and its host
galaxy. Traditionally, one way to achieve this is by performing
a two-dimensional (2D) decomposition of the observed surface
brightness, in a way that the galaxy is often modelled by a pa-
rameterised model, typically a Sérsic profile (Li et al. 2021; Toba
et al. 2022), while the AGN component can be assumed to be
a point source described by the point-spread function (PSF) of
the relevant observational instrument. This method can be fur-
ther customised with different profiles to describe more com-
plex light distributions of the host galaxy and different PSF mod-
els to account for any temporal and spatial variations. However,
in addition to making simplified assumptions regarding galaxy
morphology and structure (which may be particularly problem-
atic for certain galaxy types), the surface brightness fitting ap-
proach is very time-consuming, making it unfeasible for large
surveys. These fitting methods, based on surface brightness fit-
ting by codes such as GALFIT (Peng et al. 2002), often fail when
the galaxy cannot be easily described by a parameterised pro-
file, which can be the case for highly irregular galaxies or merg-
ing galaxies, leading to a high failure rate (Ribeiro et al. 2016;
Ghosh et al. 2023; Margalef-Bentabol et al. 2024). Another prac-
tical difficulty is that traditional methods usually do not have a
built-in mechanism to easily take into account systematic effects
such as variations in the PSF, which can fundamentally limit the
level of precision in the decomposition.

With the advent of the Euclid space telescope (Laureijs et al.
2011) and its uniquely transformative power in high spatial reso-
lution, sensitivity, and survey volume, we have an unprecedented
opportunity to trace the co-evolution of the SMBHs and their
host galaxies in statistically large samples across cosmic history.
However, as explained above, traditional methods increasingly
struggle to cope with the data complexity and volume and often
fail to meet the higher requirements on precision and accuracy.
To overcome these issues, in this work, we use a deep-learning
(DL) based method developed in Margalef-Bentabol et al. (2024)
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to determine the AGN contribution fraction to the total observed
light of a galaxy in imaging data. Specifically, we train a DL
model with realistic mock images generated from cosmological
hydro-dynamical simulations in which we inject AGN at differ-
ent levels by adjusting the relative contribution of the PSF. Con-
sequently, the trained model can be used to estimate the fraction
of the light originating from a central point source, which we
can then interpret as the AGN contribution fraction. This method
enables a more nuanced study of AGN, moving beyond a bi-
nary classification of AGN presence or absence. Some galaxies,
while not classified as AGN by traditional selection methods,
may still exhibit AGN activity that influences their host galax-
ies. By quantifying the AGN contribution fraction, we can bet-
ter assess the role of AGN across a continuum of activity levels.
Moreover, for comparisons with other selection techniques (gen-
erally binary selection) such as those based on X-ray luminosity,
MIR colours, and optical spectroscopy, we can still apply spe-
cific thresholds on the PSF contribution fraction to classify AGN
candidates. In this work, we present samples of AGN candidates
identified with our method and compare it to these alternative
selection approaches.

Due to the relatively short timescale of the AGN activity
and its diverse observational signatures, it is often challenging
to construct sufficiently large samples of AGN to perform ro-
bust statistical and multi-dimensional analyses of the AGN pop-
ulation and co-evolution with the host galaxies. With Euclid’s
large survey area this problem can be overcome. Furthermore,
Euclid’s high spatial resolution and sensitivity make it the per-
fect survey to which our DL-based method can be applied to
analyse the AGN contribution in imaging data. In this paper, we
present the first study of identifying AGN using DL-based image
decomposition technique in the first Quick Data Release of the
Euclid mission (Q1, Euclid Quick Release Q1 2025). Through-
out the paper, we use the terms PSF contribution and AGN con-
tribution interchangeably.

The paper is organised as follows. In Sect. 2, we first briefly
introduce the Euclid imaging data used in this work and the key
characteristics. Then we explain our galaxy sample selection and
the various AGN-selection methods which are used to compare
with our DL-based AGN identification method. In Sect. 3, we
describe the Euclid mock observations generated from the cos-
mological hydrodynamic simulations and how they are used to
train our DL model. In Sect. 4, Finally, using the AGN identi-
fied by our model, we examine the relation between the growth
of the SMBHs (as traced by the AGN contribution fraction and
AGN luminosity) and their host galaxy properties. In Sect. 5, we
present our main conclusions and future directions. Throughout
the paper we assume a flat ΛCDM universe with Ωm = 0.3089,
ΩΛ = 0.6911, and H0 = 67.74 km s−1 Mpc−1 (Planck Collabora-
tion: Ade et al. 2016).

2. Data

In this section, we first briefly describe the Euclid data products
used in this paper. Then we explain the selection criteria im-
posed to construct a stellar-mass-limited galaxy sample. Finally,
we present various commonly used AGN-selection methods that
will be used to compare with our AGN identification method.

2.1. Euclid data products

For this work, we exploit the first Euclid Quick Data Release
(Q1, Euclid Quick Release Q1 2025), which constitutes the first
public data release. A detailed description of the mission and a
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Fig. 1. Euclid VIS PSF. We stacked 500 random empirical PSFs and
show the mean PSF (top panel), standard deviation (central panel), and
the coefficient of variation (bottom panel), calculated pixel by pixel. The
pixel resolution is 0 .′′1 pixel−1. The axes show the number of pixels. The
colour bar shows the value of each pixel.

summary of the scientific objectives are presented in Euclid Col-
laboration: Mellier et al. (2024) and a description of the DR can
be found in Euclid Collaboration: Aussel et al. (2025), Euclid
Collaboration: McCracken et al. (2025), Euclid Collaboration:
Polenta et al. (2025), and Euclid Collaboration: Romelli et al.
(2025). Q1 covers 63.1 deg2 in total in the Euclid Deep Fields
(EDFs): North (EDF-N), South (EDF-S) and Fornax (EDF-F),
observed by a single visit with the Visible Camera (VIS) in
a single broadband filter IE (Euclid Collaboration: Cropper
et al. 2024) and the Near Infrared Spectrometer and Photometer
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(NISP) instrument in three bands YE, JE, and HE (Euclid Collab-
oration: Jahnke et al. 2024).

We make use of a number of data products from Q1, in-
cluding imaging data and associated catalogues (Altieri et al.,
in prep.), photometric measurements, and galaxy physical prop-
erties, such as stellar masses and star-formation rates (SFRs).
For a description of the photometric catalogues, see Euclid Col-
laboration: Romelli et al. (2025). For a complete description
of how photometric redshifts (photo-z) and physical properties
are inferred in the Q1 data (Euclid Collaboration: Tucci et al.
2025, Tucci et al. in prep.). We note that photometric redshifts
and physical properties are currently estimated without account-
ing for AGN contribution. As a result, some findings (especially
for sources with significant AGN contribution) may be less reli-
able. Future analyses should incorporate more refined measure-
ments to improve accuracy. For this work, we use the VIS imag-
ing data due to its high spatial resolution, with a pixel resolu-
tion of 0 .′′1 pixel−1 and a depth of 24.7 AB mag (10σ observed
depth), observed in the visible filter IE. For each galaxy in our
selected sample (see Sect. 2.2), we made a cutout of 4′′ × 4′′
(40 pixels × 40 pixels), with the source at the centre. This size
corresponds to a physical size between 25 kpc × 25 kpc and
35 kpc × 35 kpc in the redshift range 0.5 < z < 2. This redshift
range is chosen to ensure similar physical size across cutouts.
Along with the VIS images, we use the empirical VIS PSFs (Eu-
clid Collaboration: Cropper et al. 2024). Each source is accom-
panied by a PSF and, from all available PSFs, we choose a ran-
dom sample of approximately 500 000 PSFs distributed within
all three EDFs. In Fig. 1 we show the stacked PSFs (a randomly
selected subsample of 500) and display the mean, standard de-
viation, and coefficient of variation (i.e., the standard deviation
divided by the mean). The typical VIS PSF full width at half
maximum (FWHM) is 0 .′′13. The mean coefficient of variation
is around 13%. This level of intrinsic variation in the observed
PSF will be later compared to the precision of our method in
recovering the contribution of the PSF in the VIS imaging data
(see Sect. 4.1). It is worth noticing that potential differences in
the spectral energy distribution (SED) of stars used to generate
the PSFs and those of AGN could lead to variations in the shape
and size of the PSF. Further work is needed to investigate how
these variations depend on the choice and colours of stars, and
to assess their impact on our method.

2.2. Galaxy sample selection

We construct our sample of galaxies from the Euclid catalogues
by first applying several conditions to remove possible contam-
inants and ensure a high S/N detection. The conditions applied
are the following.

– VIS_DET = 1 to ensure detection in the IE band.
– DET_QUALITY_FLAG < 4. This criterion ensures that we re-

move contaminants in the form of close neighbours, sources
blended with another source, saturated sources or sources too
close to the border, within the VIS or NIR bright star masks
or within an extended source area, and bad pixels.

– SPURIOUS_FLAG = 0 to remove spurious sources.
– MUMAX_MINUS_MAG > −2.6, to remove sources that have a

high probability of being point-like (Euclid Collaboration:
Romelli et al. 2025).

– IE < 24.5, corresponding to a 10σ detection.

Furthermore, we imposed the following additional criteria to en-
sure good-quality photo-z (zph) and physical parameter estima-
tions:

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
Redshift z

42.0

42.5

43.0

43.5

44.0

44.5

45.0

45.5

46.0

lo
g 1

0(
L X

ra
y
[e

rg
s

1 ]
)

4XMM & CSC2
EROMAIN

0

25

50

#

20 40 60 80
100

#

Fig. 2. X-ray luminosity of the X-ray detected Euclid sources as a func-
tion of redshift. In blue we show the sources detected in EROMAIN
and in yellow those detected in 4XMM and CSC2. The top histogram
shows the redshift distributions of the different samples and the right
histogram shows the distributions in the X-ray luminosity.

– PHZ_FLAGS = 0;
– PHYS_PARAM_FLAGS = 0;
– QUALITY_FLAG = 0.

Finally, we select galaxies in the redshift range 0.5 ≤ zph ≤ 2.0
and with stellar mass M∗ ≥ 109.8M⊙. The stellar mass limit cho-
sen here is motivated by Euclid Collaboration: Enia et al. (2025),
who using a similar multi-wavelength sample of galaxies find
that at z = 2 and for galaxies with M∗ ≥ 109.8M⊙, the sam-
ple is more than 90% complete. After all these selection criteria,
we are left with a final stellar-mass-limited sample of 624 153
galaxies.

2.3. AGN selections

AGN can exhibit various observational features across the en-
tire electromagnetic spectrum. Consequently, different selection
techniques are used to identify different flavours of AGN (e.g.,
observed with different viewing angles, dust obscuration levels
and/or at evolution stages). We use the following three widely
used AGN-selection techniques to compare with our DL-based
methodology.

1. X-ray AGN: Galaxies are classified as AGN if they have a
counterpart identified in Euclid Collaboration: Roster et al.
(2025). Euclid Collaboration: Roster et al. (2025) con-
structed a catalogue of Q1 galaxies with counterparts in any
of the three X-ray surveys that overlap with the EDFs: the
XMM-Newton 4XMM-DR14 survey (4XMM; Webb et al.
2020); the Chandra Source Catalog v.2.0 (CSC2; Evans et al.
2024); and the eROSITA DR1 Main sample (EROMAIN;
Predehl et al. 2021; Merloni et al. 2024). All three surveys
(4XMN, CSC2, and EOROMAIN have soft X-ray energy
range of 0.5–2 keV). However, EROMAIN does not cover
EDF-N. The catalogue includes public spectroscopic red-
shifts (spec-zs), if available. In those cases, we use the spec-
z instead of the photo-z from the Q1 catalogue. To select a
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high-purity sample of X-ray AGN and minimise contami-
nants, we select only sources that satisfy the following crite-
ria:

– match_flag equal to 1, to select sources with the highest
individual probability of being the correct counterpart to
the X-ray sources, in any of the surveys;

– low Galactic probability, Gal_proba < 0.5, to ensure
selecting extragalactic sources;

– X-ray signal-to-noise ratio S/N ≥ 2;
– X-ray luminosity LX [0.5−2 keV] ≥ 1042 erg s−1.

There are a total of 335 sources in 4XMM, 14 in CSC2
and 276 in EROMAIN. Figure 2 shows the different sources
identified in the LX [0.5−2 keV] versus redshift plane. Due to
small number statistics and similar sensitivities, we decided
to combine 4XMM and CSC2. At a given redshift, galaxies
detected in EROMAIN tend to have higher LX [0.5−2 keV]. This
is expected given the flux limits of the three X-ray surveys.

2. MIR AGN: MIR colour-selected AGN selection was done
by (Euclid Collaboration: Matamoro Zatarain et al. 2025).
They followed the criteria from Assef et al. (2018) to find
sources with counterparts in the AllWISE Data Release 6
(DR6, Wright et al. 2010; Mainzer et al. 2011), which inte-
grates data from both the WISE cryogenic and NEOWISE
post-cryogenic survey (Mainzer et al. 2011) phases, provid-
ing the most complete mid-infrared sky coverage available
to date. The AllWISE DR6 mapped the entire sky in the
four bands, W1, W2, W3, W4 (centred at 3.4, 4.6, 12, and
22 µm, respectively), detecting over 747 million sources. Eu-
clid Collaboration: Matamoro Zatarain et al. (2025) used two
diagnostics, defined in Assef et al. (2018), to select AGN.
The first diagnostic, C75, focusing on achieving 75% com-
pleteness for the selected AGN candidates (while achieving
51% reliability), is defined by

W1 −W2 > 0.71 , (1)

where W1 and W2 are given in the Vega magnitude system.
The second diagnostic R90, focusing on obtaining a sample
with 90% reliability (and achieving 17% completeness), is
defined as follows:

W1−W2 >
{

0.65 exp[0.153(W2 − 13.86)2], if W2 > 13.86 ,
0.65, if W2 ≤ 13.86 .

(2)

These two diagnostics must also satisfy the following extra
conditions:

– W1 > 8 and W2 > 7, with S/NW2 ≥ 5, to only con-
sider sources with W1 and W2 magnitudes fainter than
the saturation limits of the survey;

– cc_flags = 0 to ensure that the sources are not artefacts
or affected by artefacts (Euclid Collaboration: Matamoro
Zatarain et al. 2025).

According to the C75 and R90 diagnostic, there are 9052 and
835 AGN, respectively.

3. DESI spectroscopic AGN: This AGN selection was done by
Euclid Collaboration: Matamoro Zatarain et al. (2025) by se-
lecting the counterparts with the spectroscopically identified
AGN in the DESI Early Data Release (DESI Collaboration
et al. 2024), with emission line fluxes, widths and equiva-
lent widths measured with FastSpecFit (Moustakas et al.
2023), including:

– QSO classification based on DESI SPECTYPE (Siudek
et al. 2024);

Table 1. Number of AGN for each selection method used for comparing
with our method in this paper.

AGN-selection method AGN
X-ray detection (4XMM & CSC2) 349
X-ray detection (EROMAIN) 276
DESI optical spectroscopy 229
MIR colours (C75, AllWISE) 9052
MIR colours (R90, AllWISE) 835

– AGN classification based on the detection of broad Hα,
H β, Mg ii, or C iv emission lines with a FWHM ≥

1200 km s−1;
– AGN classification for DESI sources with a spectro-

scopic z ≥ 0.5 based on the KEx diagnostic dia-
gram of Zhang & Hao (2018), which makes use of the
[O iii] λ5007 emission line width, the BLUE diagram of
Lamareille (2010), which makes use of the equivalent
width of the H β and [O ii] λ3727 emission lines, or the
WHAN diagram of (Cid Fernandes et al. 2010), which
makes use of the equivalent width of the Hα emission
line.

For these sources, a catalogue with spec-z and estimates of
the AGN bolometric luminosity exist (Siudek et al. 2024). In
total, there are 229 AGN spectroscopically confirmed within
our parent sample, with 47 QSO, 64 AGN with broad line
emission, and 134 AGN confirmed through the different dia-
grams.

Table 1 shows a summary of the number of AGN depending
on the selection method. We construct a sample of galaxies with
no clear AGN signatures for comparison with the different AGN
samples, which we call ‘non-AGN’. This sample is selected in
the EDF-S, where the X-ray and MIR coverage overlap, and
includes galaxies that have no X-ray detection and do not sat-
isfy either of the two MIR AGN diagnostics. While some AGN
may still be present due to the sensitivity limits of the X-ray
and MIR data sets available and the lack of optical spectroscopic
AGN identification, AGN are relatively rare, so statistically, this
‘non-AGN’ sample should provide a reasonable representation
of galaxies without AGN.

3. Methodology

In this section, we first describe the construction of the mock
host galaxy Euclid VIS images with different injected levels of
the AGN contribution, which is approximated by varying contri-
butions of the PSF. Then we briefly explain our DL model used
to retrieve the PSF contribution in imaging data and the training
process.

3.1. Mock Euclid VIS data

The IllustrisTNG project (Naiman et al. 2018; Nelson et al.
2018; Marinacci et al. 2018; Pillepich et al. 2018; Springel et al.
2018; Nelson et al. 2019) is a series of cosmological hydro-
dynamical simulations of galaxy formation and evolution, with
different runs that differ in volume and resolution. The initial
conditions are drawn from Planck results (Planck Collaboration:
Ade et al. 2016). For this work, we used TNG100 and TNG300,
which have comoving length sizes of 100, and 300 Mpc h−1, re-
spectively. TNG100 contains 18203 dark matter (DM) particles
with a mass resolution of 7.5 × 106M⊙, while TNG300 con-

Article number, page 5 of 20



A&A proofs: manuscript no. output

tains 25003 dark matter (DM) particles with a mass resolution
of 6 × 107 M⊙. The baryonic particle resolution is 1.4 × 106 M⊙
for TNG100 and 1.1 × 107 M⊙ for TNG300. More details on Il-
lustrisTNG can be found in Pillepich et al. (2018).

We selected galaxies from simulation snapshots correspond-
ing to redshifts between z = 0.5 and 2 (snapshot number be-
tween 67 and 25). The time step between each snapshot is around
150 Myr. For TNG100, we selected galaxies with stellar mass
M∗ > 109 M⊙, while for TNG300 the lower mass limit for our
sample is M∗ > 8× 109M⊙. These limits ensure that most galax-
ies have a sufficient number of stellar particles in each simulation
(hence are reasonably well resolved). To construct our training
data set we used a sample of 150 000 galaxies chosen to cover
the redshift range and stellar mass range uniformly. We do this
so that massive galaxies or high-redshift galaxies are not under-
represented in our training sample. We also limit the number of
galaxies for computational reasons.

For each galaxy, we generated a synthetic Euclid VIS ob-
servation from the simulations at the same pixel resolution
(0 .′′1 pixel−1) and in the photometric filter, following these steps.

– Each stellar particle contributes its SED that depends on
mass, age, and metallicity and is derived from stellar pop-
ulation synthesis models of Bruzual & Charlot (2003). The
sum of all stars’ contributions is passed through the Euclid IE
filter to create the smoothed 2D projected map (Rodriguez-
Gomez et al. 2019; Martin et al. 2022), with the galaxy at its
centre. The image is cut to a size of 4′′ × 4′′, which corre-
sponds to approximately 25 kpc × 25 kpc to 35 kpc × 35 kpc
in the redshift range of this work.

– After that, each image was convolved with a randomly cho-
sen Euclid VIS PSF (to account for the spatial and temporal
variations of the PSF).

– To account for the statistical variation of a source’s photon
emissions over time, Poisson noise was added to each image.

– Finally, each image was injected into cutouts of real Euclid
VIS data, to ensure that our training data include realistic
Euclid background and noise. The cutouts of 4′′ × 4′′ size
were obtained randomly within the Q1 area, with the con-
dition that there are no invalid pixels within the cutouts and
that there is no source in the centre (within a 9′′ radius, de-
rived from the estimated source density of the Euclid Q1
deep fields.), where we inject the simulated galaxy. The real
Euclid VIS sky cutouts were retrieved and processed from
ESA Datalabs (ESA Datalabs 2021).

While IllustrisTNG includes SMBH feedback in their phys-
ical models, the simulated images produced do not include the
light emission from the possible presence of AGN, therefore, we
need to add the contribution of the AGN by injecting a PSF com-
ponent at varying contribution levels. The PSF contribution frac-
tion (i.e., contribution to the total light) can be defined as

fPSF =
FPSF

Fhost + FPSF
, (3)

where FPSF is the aperture flux of the PSF component and Fhost
is the aperture flux of the host galaxy. We want to create a di-
verse training sample with different values of fPSF. To do so, we
injected a central point source at different levels into the host
galaxy image. The observed Euclid PSF effective models (Crop-
per et al. 2016) were used as the central point source. For each
galaxy, five different images were created with five different fPSF
values, chosen randomly in the range [0, 1). The PSF injected
images were created as follows:

fPSF = 0.07 fPSF = 0.14 fPSF = 0.56 fPSF = 0.62

fPSF = 0.05 fPSF = 0.45 fPSF = 0.55 fPSF = 0.92

fPSF = 0.25 fPSF = 0.45 fPSF = 0.68 fPSF = 0.9

fPSF = 0.25 fPSF = 0.59 fPSF = 0.64 fPSF = 0.74

Fig. 3. Example mock Euclid VIS images with varying levels of PSF
contribution ( fPSF) to the total flux. The images have been generated to
mimic Euclid observations and include realistic Euclid noise and back-
ground. Each row corresponds to a different galaxy with increasing PSF
contribution fractions from left to right, at different magnitudes. Images
correspond to a physical size of around 25 kpc and are displayed with
an inverse arcsinh scaling. The blue circles show an aperture of 0 .′′5 ra-
dius.

1. a random PSF was selected;
2. the flux of the PSF and the host galaxy was measured

within an aperture of 0 .′′5 radius for all galaxies, using the
aperture_photometry function of the photutils pack-
age (Bradley et al. 2024);

3. the PSF image was scaled to satisfy Eq. (3), for a chosen
fPSF;

4. the scaled PSF image was added to the host galaxy image, at
the centre of the galaxy.

We chose this aperture to capture the majority of the galaxy flux
for most sources. This is particularly true at the highest redshifts,
where most galaxies above the stellar mass limit are smaller than
our aperture (van der Wel et al. 2014). However, at lower red-
shifts, an increasing number of galaxies exceed the aperture size,
potentially leading to a slight overestimation of fPSF. Conversely,
selecting a larger aperture to accommodate these extended low-
redshift galaxies could introduce flux contamination from nearby
sources, biasing fPSF toward lower values. Finding an optimal
aperture across a wide redshift range is challenging, and we leave
a more detailed exploration of aperture selection to future work.
This procedure resulted in a final sample of 750 000 mock galax-
ies with different levels of fPSF. Example images of these simu-
lated galaxy images with varying levels of fPSF can be seen in
Fig. 3. It is clear that as we increase the relative contribution of
the PSF, the galaxy image becomes increasingly more dominated
by an unresolved point source.

3.2. Deep learning model and training

Zoobot (Walmsley et al. 2023) is a Python package used to
measure detailed morphologies of galaxies with DL. Zoobot in-
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cludes different DL architectures pre-trained on millions of la-
belled galaxies, derived from visual classifications of the Galaxy
Zoo project (Lintott et al. 2008) on real images of galaxies
selected from surveys such as the Sloan Digital Sky Survey
(SDSS), Hyper Suprime-Cam (HSC) and Hubble (Willett et al.
2013, 2017; Simmons et al. 2017; Walmsley et al. 2022a,b;
Omori et al. 2023). The models can be adapted to new tasks
and new galaxy surveys without needing a large amount of la-
belled data, since they rely on the learned representations. This
process, known as ‘transfer learning’ (Lu et al. 2015), allows
a previously trained machine-learning model to be applied to a
new problem. Instead of retraining all parameters from scratch,
the existing model architecture and learned weights from prior
training can be reused, making adaptation more efficient.

For this work, to train a deep-learning model to predict the
PSF contribution fraction, fPSF, from a galaxy image, we fol-
low the same procedure as in Margalef-Bentabol et al. (2024).
We use a ConvNeXt (Liu et al. 2022) model, in particular, the
ConvNeXt-Base architecture, which consists of 36 convolutional
blocks that are designed to resemble transformer blocks, while
maintaining the efficiency of CNNs pre-trained on the Galaxy
Zoo data set of over 820 000 images and 100 million volunteer
votes to morphological questions. ConvNext architectures in-
corporate enhancements inspired by transformer models (Doso-
vitskiy et al. 2021) into traditional convolutional networks, re-
sulting in improved performance and efficiency for vision-based
tasks. We adapted the model to perform a regression task by re-
placing the original model head (top layer) with a single dense
layer with one neuron (corresponding to the predicted output
of the network), using a sigmoid activation function for the fi-
nal layer (to restrict the output between 0 and 1), and a mean-
square-error loss function to train the network. First, we load
the pre-trained parameters of the architecture. Then, we retrain
the last four blocks and the linear head, while keeping the rest
of the network’s parameters frozen to the optimal values found
for the pre-trained data from Galaxy Zoo. Our sample of mock
galaxies was split into train, validation, and test sets, containing
80%, 10%, and 10% of the total sample, respectively. The split
is done in a way that the five iterations of a single galaxy (the
mock images of the same galaxy with five different levels of the
PSF component injected) are only contained in one of the splits.
The train and validation data sets are used during training and
to optimise the model’s hyperparameters, while the test data set
is only used for evaluating the best-performing model presented
here. The model was trained on a v100 GPU and took 24 hours
to complete.

4. Results

In this section, we first analyse the overall performance of our
DL model in estimating fPSF, using common metrics for regres-
sion tasks such as the root mean squared error (RMSE), the rel-
ative absolute error (RAE) and outlier fraction. Then we present
an analysis on how our method compares with other AGN-
selection techniques, and how the overlaps with other selections
change with respect to AGN properties such as its luminosity and
relative dominance compared to the host galaxy. Finally, we ex-
amine the dependence of our DL-identified AGN on host galaxy
stellar mass and location in the star-formation main sequence
(SFMS) diagram.
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Fig. 4. Comparison between the injected PSF contribution fraction and
the predicted contribution fraction from Zoobot on the test set across
the whole redshift range (0.5 < z < 2). The diagonal line is the 1:1 rela-
tion. The top plot shows the mean difference and the standard deviation
as a function of the injected PSF contribution fraction. The colour bar
indicates the number of sources in each 2D bin.

4.1. Zoobot model performance

We analyse the performance of the trained DL model on the test
data constructed from the TNG simulations, evaluating its abil-
ity to predict the PSF contribution fraction ( fPSF. The bottom
panel of Fig. 4 shows the predicted fPSF versus the injected fPSF
(i.e., the true value), colour-coded by the number density of ob-
jects. It is evident that the vast majority of the objects lie close to
the 1:1 line across the whole range of the injected fPSF, demon-
strating that the model is able to recover the true fPSF with high
accuracy and precision. For galaxies with fPSF[injected] < 0.05,
where the mean difference between the predicted and true fPSF is
larger, only around 5% of them have fPSF[predicted] > 0.2 and
0.4% have fPSF[predicted] > 0.5. Furthermore, the galaxies with
the largest differences tend to be in the highest redshift bins and
appear to be compact sources. As shown in Margalef-Bentabol
et al. (2024), when sources are very compact, and possibly un-
resolved, this method will not give accurate results in terms of
the predicted fPSF. The top panel of Fig. 4 shows the mean dif-
ference between the real and predicted values (∆ fPSF = fPSF
[injected] − fPSF [Zoobot]) and its dispersion as a function of
the injected fPSF. The mean bias across the whole test set is
⟨∆ fPSF⟩ = −0.0078. When the intrinsic PSF contribution is very
low (i.e., fPSF [injected] < 10%), the difference ∆ fPSF starts
to increase (to −0.06 in the lowest fPSF [injected] bin), with a
slight overestimation in the predicted fPSF. The dispersion also
increases with decreasing fPSF [injected], from 0.02 to 0.14.

We further analyse the RMSE, RAE, and outlier fraction as a
function of different properties, including the injected (i.e., true)
fPSF, redshift, S/N, and size. The RMSE can be derived as fol-
lows,

RMSE =

√√
1
n

n∑
i=1

( f i
PSF[injected] − f i

PSF[predicted])2 , (4)
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Fig. 5. RMSE and average RAE as a function of the injected PSF contribution fraction (top left panel), redshift (top right), S/N (bottom left), and
size (bottom right). The error bars show the 95% interval from bootstrapping. The insets show the distribution of each quantity. The grey area of
the top left panel corresponds to the level of the intrinsic fractional variation (standard deviation divided by the mean), considering the spatial and
temporal variations in the observed Euclid VIS PSF.
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Fig. 6. Similar to Fig. 5, but for outlier fraction, calculated as the frac-
tion of galaxies with RAE > 50% or | fPSF[predicted]− fPSF[true]| > 5σ.

which measures the average difference between the predicted
values and the actual injected values. The RAE is the ratio be-
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Fig. 7. Distribution of fPSF for the whole Euclid stellar-mass-selected
sample of galaxies with 0.5 < z < 2 and log10(M∗/M⊙) > 9.8. The
vertical dashed lines represent the two adopted thresholds above which
we classify galaxies as AGN according to the DL model, for the purpose
of comparing with other AGN-selection methods.

tween the absolute error divided by the real value,

RAE =
| fPSF[injected] − fPSF[predicted]|

fPSF[injected]
. (5)

Note that the RAE is not well defined when the real fPSF is equal
to zero, therefore we do not calculate RAE in that case. Based on
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Fig. 8. Fraction of galaxies in bins of the predicted PSF contribution fraction in the AGN samples from different selections (X-ray detection, MIR
colours, and optical spectroscopy) and the ‘non-AGN’ sample (see text in Sec. 2.3).

the RAE, we can also define the outlier fraction in the Zoobot
predictions, as the fraction of galaxies that have RAE higher than
a given threshold (toutlier). That is the fraction of galaxies that
satisfy

RAE > toutlier , (6)

with the adopted thresholds being 50% in this study (i.e., the pre-
diction error is at least 50%). We use Sextractor to determine
the physical size of the simulated galaxy, as measured by the
Kron radius (rw), in kpc. To calculate the S/N, we measure the
flux within an aperture of 0 .′′5 centred on the source and divide
by the flux corresponding to the background noise in an aperture
of the same size in an empty region of the sky near the source.

Our trained DL model has an overall mean value of RMSE =
0.052 and RAE = 0.30. In Fig. 5, we show the RMSE and
RAE of the Zoobot predictions as a function of the injected
PSF contribution fraction, redshift, S/N and Kron radius (cal-
culated in the IE filter). The error bars in Fig. 5 represent the
95% confidence interval obtained through bootstrapping. We can
see that the RMSE decreases with increasing contribution from
the PSF, which is expected because a more dominant PSF can
help us estimate its contribution more precisely. In fact, when
fPSF [injected] ≳ 40%, the precision of fPSF[predicted] is higher
than the intrinsic variation (fractional change of about 13% as
shown in Fig. 1) in the observed Euclid PSF (indicated by the
grey shaded region). The RAE increases rapidly with decreasing
fPSF [injected], which is expected due to RAE being sensitive
to small values of fPSF[injected]. Both the RMSE and RAE in-
crease slowly with increasing redshift (with a minimum value
of RMSE of 0.035 at the lowest redshift bin and a maximum of
0.67 at the highest redshift bin), and remain mostly constant with
S/N, probably due to the training sample having enough galaxies
with low S/N. The RMSE increases with decreasing galaxy size
(with a minimum value of 0.36 for larger galaxies and a maxi-
mum of 0.74 for the smallest ones), which can be explained by
the fact that it is more difficult to estimate fPSF precisely in more
compact galaxies.

The overall outlier fraction is 8 ± 1%, based on outliers de-
fined as those with RAE > 50%. This definition of outlier frac-
tion is most sensitive to smaller values of the true fPSF and can

miss large absolute errors; that is why we also adopt another
definition for selecting outliers based on the residuals, and us-
ing the overall RMSE value of 0.052. We define as outliers those
galaxies for which the difference between the predicted and true
fPSF is more than 5σ (i.e., > 0.26). Based on this alternative
definition, we find an overall outlier fraction of 0.43 ± 0.03%.
In Fig. 6 we show how the two different outlier fractions change
as a function of fPSF [injected], redshift, S/N, and galaxy size.
The residual-based outlier fraction generally increases with de-
creasing fPSF [injected], increasing z, and galaxy size, while re-
maining relatively constant with S/N. The outlier fraction based
on RAE increases more drastically with decreasing fPSF, as ex-
pected, and only slightly with increasing z, while remaining con-
stant with S/N and galaxy size.

4.2. Comparison with other AGN selections

We apply the trained DL model to our stellar-mass-selected
sample of real Euclid galaxies described in Sect. 2.3. Figure 7
shows the cumulative distribution of the estimated fPSF for the
whole sample across the EDFs. Traditional methods typically
adopt a binary AGN versus non-AGN classification, but it has
been shown that, for massive galaxies, the AGN fraction de-
pends on the sensitivity of the survey (Sabater et al. 2019). With
our approach, by estimating the AGN contribution fraction, we
can move beyond this simplistic binary classification. Galaxies
can, instead, be classified as AGN candidates based on a spe-
cific threshold of the fractional PSF contribution. While these
AGN candidates have a measurable contribution from the PSF,
they need to be confirmed as AGN, since other compact central
sources, such as stellar clusters or starburst regions, particularly
at high redshift, may remain unresolved and contribute to the
detected PSF contribution fraction in our method. We can select
the most appropriate threshold for a given science case, whether
we aim to focus on more dominant AGN or include galaxies
with lower AGN contributions. First, we apply a threshold of
fPSF > 0.2 to classify AGN candidates. This threshold, chosen
as a conservative cut (approximately 4σ), is based on the over-
all RMSE of the model. Using this criterion, our model identi-
fies 48 840± 78 galaxies being classified as AGN over the entire

Article number, page 9 of 20



A&A proofs: manuscript no. output

42.0 42.5 43.0 43.5 44.0 44.5 45.0
log10(LX [0.5 2 keV] / erg s 1)

41.5

42.0

42.5

43.0

43.5

44.0

44.5

45.0

45.5

L P
SF

/[
er

gs
1 ]

)

EROMAIN 
4XMM & CSC2

42.0 42.5 43.0 43.5 44.0 44.5
log10(L / [erg s 1])

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ov
er

la
pp

in
g 

fra
ct

io
n 

(A
GN

)

EROMAIN
4XMM & CSC2
DESI spec.

Fig. 9. X-ray and bolometric luminosity relations. The top panel show
the AGN luminosity LPSF. The bottom panel shows the overlapping frac-
tion of AGN as a function of the adopted cut on the X-ray luminos-
ity (for the X-ray sample) or the bolometric luminosity (for the DESI
spectroscopic sample). The solid lines show the overlapping fraction of
AGN defined by fPSF > 0.2, while the dashed lines show the fraction if
we select AGN as defined by fPSF > 0.1.

area of the EDFs by our model, which represents 7.8 ± 0.1%
of our whole stellar-mass-limited sample and corresponds to
774 ± 2 deg−2. To estimate the number of AGN candidates, we
performed Monte Carlo realisations of the fPSF values by sam-
pling from a Gaussian distribution, where the width of the distri-
bution was set to the RMSE value. The mean of these realisations
represents the value of the classified AGN candidates, while the
standard deviation of the realisations determines the error. We
also adopt a less conservative cut at fPSF > 0.1, motivated by the
fact that the mean difference between the predicted fPSF and the
true fraction is close to zero in this regime, as demonstrated in
Fig. 4. Adopting this cut, we find a total of 161 503 ± 140 AGN
in the EDFs, representing to 25.9 ± 0.1% of the whole stellar-
mass-limited sample and corresponding to 2559 ± 3 deg−2. This
highlights the power of our method in identifying an unprece-
dentedly large sample of AGN-hosting galaxies, spanning a wide
range in the relative dominance of the central point source, by
selecting more AGN candidates with a measurable AGN com-
ponent than other methods we compare against, whose numbers
are shown in Table 1. Furthermore, there are 1123 ± 11 galaxies
with fPSF > 0.5, that is to say, galaxies in which the AGN over-
shine the host galaxy. This number corresponds to 18±1 of such
AGN per deg2.

To compare our AGN based on the estimated fPSF with AGN
samples selected using other selection criteria in Sect. 2.3, we
summarise in Table 2 the percentage of AGN in each selection
that are also selected as AGN by our DL model. Using the cut at
fPSF > 0.2, 30% of the X-ray AGN from the combined 4XMM
and CSC2 surveys and 43% of the X-ray AGN from the ERO-
MAIN survey are also selected as AGN based on the estimated
fPSF. The larger overlap with the EROMAIN AGN sample is
possibly due to the fact that these X-ray AGN are more lumi-
nous than the ones from XMM and Chandra (as shown in Fig. 2).
With respect to the MIR-selected AGN, 29% (13%) of the AGN
selected by the R90 (C75) diagnostic are also selected by our
method. The smaller overlap with the C75-selected MIR AGN
is consistent with the fact that this selection has a higher con-
tamination rate compared to the R90 selection. Finally 31% of
DESI spectroscopic AGN are also identified as AGN according
to our selection based on PSF fraction. However, when consider-
ing only the QSO subclass within the DESI spectroscopic AGN,
74% meet our selection criteria. If we use a less conservative
cut at fPSF > 0.1, then the overlapping fractions increase signifi-
cantly for all three AGN selections (i.e., X-ray detection, MIR
colour, and optical spectroscopy), with 28% overlap with the
C75 selected MIR AGN and 63% overlap with the EROMAIN
X-ray AGN at the two extreme ends (the overlap with the QSO
sample increases to 87%).

In Fig. 8 we show the normalised distributions of the pre-
dicted fPSF in the different AGN samples. The X-ray-selected
AGN are the most common AGN population among galaxies
with higher PSF contribution fractions ( fPSF > 0.3), indicat-
ing better correspondence with optically dominant AGN (which
would be naturally linked to less dust-obscured AGN; see Eu-
clid Collaboration: Roster et al. 2025). For comparison, we also
plot the distribution of the predicted fPSF in what we call the
‘non-AGN’ sample. These ‘non-AGN’ galaxies are, by construc-
tion, not identified as X-ray or MIR AGN in a small sky area
(RA = [51.7, 53.7], Dec = [−29, −28]) for which we have both
X-ray and MIR coverage. Unfortunately DESI does not overlap
with the X-ray surveys in the EDFs. We can see that while re-
assuringly a large fraction (over 70%) of the ‘non-AGN’ have
fPSF < 0.1, a small fraction (around 8%) of them do have pre-
dicted fPSF > 0.2, indicating that they can in fact be AGN that
are missed by the X-ray and MIR selections. In future work, we
will investigate whether these AGN are picked up by other selec-
tion techniques, for example, using deeper IRAC MIR data, ra-
dio data or spectroscopic data. Additionally, we explore the most
AGN-dominated galaxies in our sample that lack counterparts in
the comparison methods. In Fig. A.1, we present the properties
of galaxies with fPSF > 0.7 (purple histograms) and find that they
tend to be less massive and fainter than AGN selected by other
methods. This suggests that our approach is particularly effec-
tive at detecting AGN activity in lower-mass and fainter galaxies,
where traditional selection techniques may be less sensitive. De-
spite their lower overall luminosity, these AGN can still exhibit
a very strong central contribution in the VIS filter, as reflected
by their high PSF contribution fraction. This result opens a new
parameter space for studying AGN in lower-mass galaxies, pro-
viding valuable insights into SMBH growth in this regime.

For the X-ray-selected AGN, clearly the more luminous ones
detected in EROMAIN have systematically higher fPSF values.
Similarly, for the MIR-selected AGN, the distribution corre-
sponding to the R90 selection, which includes more secure and
possibly brighter AGN than the C75 selection, is systematically
skewed towards higher fPSF values. However, a large fraction of
the X-ray-selected, MIR, and DESI spectroscopic AGN exhibit
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Table 2. Percentage of AGN from each selection method that we also
identify as AGN using a cut on the PSF contribution fraction.

Percentage (%)
AGN-selection method fPSF > 0.2 fPSF > 0.1
X-ray (All) 35 ± 3 60 ± 4
X-ray (4XMM & CSC2) 30 ± 3 56 ± 5
X-ray (EROMAIN) 43 ± 5 63 ± 6
DESI Spectroscopic 31 ± 4 52 ± 6
MIR colours (C75, AllWISE) 13 ± 4 28 ± 1
MIR colours (R90, AllWISE) 29 ± 2 51 ± 3

significantly lower fPSF values, as seen in Fig. 8, indicating that
they are more likely to be obscured by dust. These galaxies show
little to no contribution from the central point-source component
in the IE images, which explains the low predicted fPSF values
despite their classification as AGN from their respective selec-
tions. This can be seen clearly in Figs. A.2, A.3, and A.4, where
random examples of each AGN type with fPSF < 0.1 are shown.
Many of these galaxies display spiral, clumpy, or edge-on mor-
phologies, which are expected to have higher dust content.

We can use the PSF contribution fraction to estimate the
AGN luminosity, defined as the luminosity of the PSF compo-
nent LPSF in the Euclid IE filter and calculated as

LPSF = fPSF Ltotal , (7)

where Ltotal is the total luminosity of a galaxy in the IE filter,
estimated from the total flux derived in Euclid Collaboration:
Romelli et al. (2025). We show the relation between LPSF and
the X-ray luminosity in the top panel of Fig. 9. The bottom panel
in Fig. 9 shows the fraction of AGN identified using our method
based on fPSF as a function of the adopted cut on the X-ray lu-
minosity LX, for the X-ray sample, or the AGN bolometric lu-
minosity Lbol for AGN selected in the X-ray or via DESI optical
spectroscopy. We see that the fraction of AGN selected by our
model increases with increasing LX. This is expected because
LX generally correlates with the luminosity from the PSF com-
ponent in the VIS images, albeit with significant scatter. For the
DESI spectroscopic AGN, estimates of Lbol have been estimated
through SED fitting (Siudek et al. 2024). To convert from LX to
Lbol we follow the luminosity-dependent correction presented in
Shen et al. (2020):

Lbol

LX [0.5−2 keV]
= c1

(
Lbol

1010L⊙

)k1

+ c2

(
Lbol

1010L⊙

)k2

, (8)

where c1 = 5.712, k1 = −0.026, c2 = 12.60, and k2 = 0.278.
Again we see a generally increasing fraction of AGN identified
based on fPSF with increasing Lbol.

4.3. Dependence on stellar mass and SFR

Many previous studies have shown that the X-ray luminosity or
the SMBH accretion rate increases with increasing host galaxy
stellar mass across a wide range of redshift (e.g., Mullaney et al.
2012; Rodighiero et al. 2015; Aird et al. 2018; Yang et al. 2018;
Carraro et al. 2020). Therefore, we first analyse whether stellar
mass plays a major role in determining how luminous the AGN
is (as a proxy for the growth rate of the SMBH) in a galaxy, and
whether there is any significant redshift evolution.

In Fig. 10 we show the luminosity of the AGN, which corre-
sponds to the luminosity of the PSF component LPSF in the Eu-
clid IE filter, calculated from Eq. (7) as a function of stellar mass

Table 3. Best-fit parameters for the log10(LPSF/[erg s−1]) versus
log10(M∗/[M⊙]) linear relation, in different redshift bins.

Redshift range b a b′(a = 0.61)
0.5 < z < 0.75 36.1 ± 0.5 0.61 ± 0.04 36.2 ± 0.2
0.75 < z < 1 37.2 ± 0.3 0.51 ± 0.03 36.2 ± 0.3
1 < z < 0.25 38.6 ± 0.2 0.38 ± 0.02 36.3 ± 0.6
1.25 < z < 1.5 40.1 ± 0.2 0.25 ± 0.02 36.4 ± 0.8
1.5 < z < 1.75 37.4 ± 1.2 0.55 ± 0.12 36.8 ± 0.6
1.75 < z < 1 36.2 ± 0.4 0.69 ± 0.04 37.2 ± 0.3

and redshift. The panels show the 2D histogram of the AGN lu-
minosity and stellar mass in six redshift bins. At all redshifts
we observe a broad positive correlation between LPSF and stellar
mass, supporting previous claims that SMBHs generally grow
faster in more massive systems. This could be due to a larger sup-
ply of gas in more massive galaxies and/or a more efficient way
of transporting the gas to the central region (e.g., galaxy merg-
ers and the presence of compact cores, which are more preva-
lent in galaxies with larger stellar masses). We parameterise this
correlation in each redshift bin by fitting a log-log linear func-
tion (log10 LPSF [erg s−1] = a log10 M∗[M⊙] + b) and report the
best-fit parameters and their uncertainties in Table 3. Based on
the best-fit values, we also derive another set of fits by fixing
the slope a at 0.61. This choice is motivated by the fact that, at
higher redshifts, detecting fainter AGN becomes progressively
more challenging, as shown in Fig. 10, where the lower boundary
of the distribution shifts upward with increasing redshift. This ef-
fect could potentially lead to an artificial flattening of the slope.
By fixing it to the value derived from the more complete lower-
redshift bin, we ensure that any observed evolution is reflected
in the normalisation rather than in a potentially biased slope.This
positive correlation between AGN luminosity and galaxy stellar
mass bears similarity to the well-studied SFMS (e.g., Brinch-
mann et al. 2004; Elbaz et al. 2007; Speagle et al. 2014; Pearson
et al. 2018; Popesso et al. 2023), suggesting that a common sup-
ply of gas could be used to fuel both the assembly of the SMBH
and the host galaxy. In addition, we also observe a mild red-
shift evolution in the LPSF versus stellar mass relation, indicating
SMBHs grow faster in host galaxies at the same mass at higher
redshifts. This behaviour is also qualitatively similar to the ob-
served redshift evolution of the SFMS, which could be partly
explained by an increasing molecular gas fraction at higher red-
shifts (Scoville et al. 2017; Liu et al. 2019; Tacconi et al. 2020;
Wang et al. 2022). Several studies have also shown differences in
the correlation between SMBH accretion rates and host galaxy
stellar mass in different galaxy types (Carraro et al. 2020; Aird
et al. 2022). For example, star-forming galaxies are shown to
have steeper slopes than quiescent galaxies. Given that the frac-
tion of quiescent galaxies also evolves with redshift, we defer a
proper characterisation of the evolution in the LPSF versus stel-
lar mass relation to future work when we can reliably separate
different galaxy types.

Lastly, we explore the connection between AGN identified
based on the contribution of the PSF component and their loca-
tion in the SFR versus stellar mass plane. Figure 11 shows the
2D histogram of SFR versus stellar mass, in different redshift
bins, colour-coded by the median fPSF (left panel) and the me-
dian log10 LPSF. Only bins with at least 10 galaxies are plotted.
The Popesso et al. (2023) SFMS is also over-plotted in all red-
shift bins. We can see that, in terms of the relative contribution
fraction of the AGN (as characterised by fPSF), quiescent galax-
ies (i.e., galaxies significantly offset below the SFMS) or galax-
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Fig. 10. 2D histogram of the AGN luminosity (luminosity in the IE filter multiplied by fPSF) versus stellar mass, in different redshift bins. The
white stars show the mean value and the error bars show the dispersion of the data. The colours of the 2D histogram show the number of points in
each bin.
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Fig. 11. 2D histogram of SFR versus stellar mass in different redshift bins. Each 2D bin is colour-coded by the median value of fPSF (left) or the
median value of log10(LPSF) (right) in that bin. The black lines show the Popesso et al. (2023) SFMS at the median redshift of the bin. Only bins
with at least 10 galaxies are plotted.

ies at the high-mass end (across the full range in the specific
SFR, i.e., SFR divided by stellar mass) tend to be more domi-
nated by their AGN. In terms of the absolute power of the AGN
(as characterised by LPSF), the starburst galaxies (i.e., galaxies
above the SFMS) or very massive galaxies tend to host the most
powerful AGN. The observation that starburst galaxies can host
very powerful AGN might indicate that rapid build-up of the
SMBH and the host galaxy can occur concomitantly. Galaxy
mergers provide a possible pathway for this coevolution by fun-
nelling gas into the central regions, triggering intense star forma-
tion while also fuelling the SMBH’s growth. In Fig. 12, we plot
the 2D histogram of SFR versus stellar mass, colour-coded by
the fraction of galaxies with fPSF > 0.2 (top panel), fPSF > 0.4

(middle panel) and fPSF > 0.6 (bottom panel). We can see that
while a larger fraction of the quiescent galaxies host AGN (as
defined by fPSF > 0.2 in this work) compared to the star-forming
galaxy population, this is not the case at the highest redshift bins
(where the fraction of quiescent galaxies is very small). This
could indicate that, while at high redshift, star-forming galax-
ies and their central SMBHs grow together, at lower redshifts
this co-evolution weakens, and AGN instead play a role in the
quenching of galaxies by suppressing star formation. We ob-
serve the same trend with different thresholds of fPSF, as shown
by the different panels in Fig. 12. A cautionary note to consider
is that stellar masses and SFRs are currently estimated without
accounting for the potential contribution of the AGN component

Article number, page 12 of 20



Euclid collaboration: B. Margalef-Bentabol et al.: First Euclid statistical study of AGN contribution fraction

1

0

1

2

3

lo
g 1

0(
SF

R
/[

M
yr

1 ]
) 0.5 < z < 0.75 0.75 < z < 1 1 < z < 1.25

10.0 10.5 11.0 11.5
log10(M* / [M ])

1

0

1

2

3

lo
g 1

0(
SF

R
/[

M
yr

1 ]
) 1.25 < z < 1.5

10.0 10.5 11.0 11.5
log10(M* / [M ])

1.5 < z < 1.75

10.0 10.5 11.0 11.5
log10(M* / [M ])

1.75 < z < 2

10 2 10 1 100
Fraction of galaxies with fPSF > 0.2

1

0

1

2

3

lo
g 1

0(
SF

R
/[

M
yr

1 ]
) 0.5 < z < 0.75 0.75 < z < 1 1 < z < 1.25

10.0 10.5 11.0 11.5
log10(M* / [M ])

1

0

1

2

3

lo
g 1

0(
SF

R
/[

M
yr

1 ]
) 1.25 < z < 1.5

10.0 10.5 11.0 11.5
log10(M* / [M ])

1.5 < z < 1.75

10.0 10.5 11.0 11.5
log10(M* / [M ])

1.75 < z < 2

10 3 10 2 10 1 100
Fraction of galaxies with fPSF > 0.4

1

0

1

2

3

lo
g 1

0(
SF

R
/[

M
yr

1 ]
) 0.5 < z < 0.75 0.75 < z < 1 1 < z < 1.25

10.0 10.5 11.0 11.5
log10(M* / [M ])

1

0

1

2

3

lo
g 1

0(
SF

R
/[

M
yr

1 ]
) 1.25 < z < 1.5

10.0 10.5 11.0 11.5
log10(M* / [M ])

1.5 < z < 1.75

10.0 10.5 11.0 11.5
log10(M* / [M ])

1.75 < z < 2

10 3 10 2 10 1 100
Fraction of galaxies with fPSF > 0.6

Fig. 12. Similar to Fig. 11, but colour-coded by the fraction of galaxies
with fPSF > 0.2 (top), fPSF > 0.4 (centre) and fPSF > 0.6 (bottom).

in a galaxy. Future work should focus on deriving physical prop-
erties that incorporate the AGN contribution for more accurate
results.

5. Conclusions

We have presented a DL-based image decomposition method to
quantify the AGN contribution, which is calculated as the con-
tribution of the point-source component ( fPSF) in galaxy imag-
ing data. We trained the DL model with a large sample of mock

galaxy images, produced from the TNG simulations to mimic
the Euclid VIS observations and with artificially injected AGN,
in the form of varying fPSF. We applied the trained model to es-
timate fPSF in a stellar-mass-limited sample of galaxies selected
from the Euclid Q1 data. Our main findings are the following.

– The DL model trained on the mock data is able to recover the
intrinsic contribution of the PSF, with high precision and ac-
curacy. The mean difference between the true and predicted
fPSF is −0.0078. The overall mean RMSE and RAE are 0.052
and 0.30, respectively. The outlier fraction defined as RAE
> 50% (difference > 5σ) is 8.0 ± 0.1% (0.43 ± 0.03%). In
addition, when the intrinsic fPSF is > 40%, the precision of
our method exceeds the level of the intrinsic variation in the
observed Euclid VIS PSF.

– Based on the estimated AGN contribution, 7.8±0.1% galax-
ies can be classified as AGN in the Euclid sample across the
EDFs, if we impose a condition of fPSF > 0.2. By adopting
a less conservative threshold of fPSF > 0.1, we can identify
a total of 25.9 ± 0.1% AGN. Because our DL-based method
can select AGN even if the AGN component is not the main
contributor to the luminosity of the host galaxy, this tech-
nique gives many more AGN compared to the other AGN-
selection methods explored in this study. In addition, we can
go beyond a simple binary AGN or non-AGN classification
by quantifying the contribution of the AGN.

– We compare our AGN sample selected using cuts on fPSF
with other commonly used AGN selections, based on X-ray
detections, MIR colours, and optical spectroscopy. We find
that 13–43% of the AGN (depending on the specific selec-
tion technique) are also selected as AGN by our criterion
( fPSF > 0.2). The overlap increases to 28–63% when we se-
lect our AGN using a less conservative criterion fPSF > 0.1.
In addition, we find that the overlap increases with increas-
ing X-ray luminosity (for the X-ray AGN) or bolometric lu-
minosity of the AGN (for the DESI spectroscopic AGN).

– Galaxies with larger stellar masses tend to host more lumi-
nous AGN (i.e., a more luminous point source), indicating
faster growth of the SMBH in more massive systems. The
correlation also seems to evolve mildly with redshift, with
AGN becoming more luminous at higher redshifts.

– We find that quiescent galaxies are more likely to host AGN
(as determined by our DL method) compared to star-forming
galaxies, particularly at lower redshifts, with a stronger dom-
inance of the AGN in terms of its contribution to the total
observed light. This suggests that the presence of AGN is
closely linked to the quenching process in galaxy evolution.

– The most massive and starbursting galaxies host the most lu-
minous AGN, suggesting that these galaxies undergo a phase
of intense SMBH growth alongside starburst activity. Ad-
ditionally, the higher number of galaxies with fPSF > 0.2
above and along the SFMS suggests that many star-forming
galaxies and starbursts undergo a crucial AGN phase in their
evolutionary path, highlighting the interplay between galaxy
formation, starburst activity, and black hole growth.

In future work, we will extend this DL-based approach to
higher redshifts and the Euclid NISP bands, for which the model
can easily be adapted and can output fPSF predictions of thou-
sands of galaxies in a few seconds, making it an ideal method
for future data releases from Euclid. With the future data re-
leases covering significantly larger areas, we will also extend
the comparison of our AGN sample with other AGN-selection
techniques, such as radio-selected AGN, Euclid type I and type
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II AGN, and variability-selected AGN. This will also allow us to
better investigate galaxies with high fPSF that are not classified
as AGN by any of the methods presented here. By examining
whether these galaxies are detected through alternative selection
techniques or remain uniquely identified by our approach, we
can explore the nature of this potential new population of AGN
candidates and assess their role in galaxy evolution. A com-
plementary approach would be to follow up a subset of these
sources at higher resolution to determine whether some fraction
of the PSF contribution originates from compact galactic cores
rather than AGN. Such an investigation would provide further
insight into the nature of these objects. In the current work, our
estimates of the photo-zs and galaxy physical properties such as
stellar mass and SFR are not optimised for galaxies with a domi-
nant AGN. For future analysis, using our method, we can remove
the contribution of the AGN in the photometric bands and then
carry out SED fitting using the decomposed photometric mea-
surements to obtain more reliable photo-z and physical property
estimates. Consequently, we can properly study the co-evolution
of the growth of the SMBHs and their host galaxies in different
galaxy populations (i.e., star-forming galaxies along the SFMS,
starburst galaxies and quiescent galaxies) and how the relative
pace of the two assembly histories evolve with cosmic time.
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Appendix A: AGN samples - additional information

We show in Fig. A.1 the distribution of stellar mass, redshift, magnitude in the IE filter and total luminosity of the galaxy in the IE
filter (estimated from the total flux derived in Euclid Collaboration: Romelli et al. 2025) for the sample of AGN from the various
selections (from X-ray, MIR colours, and DESI spectroscopy). The black histograms represent the samples we refer to as ‘non-
AGN’ (explained in Sec. 2.3). The purple histograms depict the sample of galaxies with fPSF > 0.7 that are not classified as AGN
by any other method.
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Fig. A.1. Normalised distribution of stellar mass (top left), redshift (top right), magnitude (bottom left), and total luminosity (bottom right) for the
different types of AGN.

Figures A.2, A.3, and A.4 show random examples of galaxies selected as X-ray, MIR, and DESI spectroscopic AGN, respec-
tively, for which our DL model predicts low values of PSF contribution fraction ( fPSF < 0.1).
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Fig. A.2. Example of X-ray AGN with fPSF < 0.1. These images correspond to a physical size of around 25 kpc and are displayed with an inverse
arcsinh scaling.

Fig. A.3. Example of MIR AGN with fPSF < 0.1. These images correspond to a physical size of around 25 kpc and are displayed with an inverse
arcsinh scaling.
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Fig. A.4. Example of DESI spectroscopic AGN with fPSF < 0.1. These images correspond to a physical size of around 25 kpc and are displayed
with an inverse arcsinh scaling.
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