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ABSTRACT

The Euclid Wide Survey (EWS) is expected to identify of order 100 000 galaxy-galaxy strong lenses across 14 000 deg2. The Euclid Quick Data
Release (Q1) of 63.1 deg2 Euclid images provides an excellent opportunity to test our lens-finding ability, and to verify the anticipated lens
frequency in the EWS. Following the Q1 data release, eight machine learning networks from five teams were applied to approximately one million
images. This was followed by a citizen science inspection of a subset of around 100 000 images, of which 65% received high network scores, with
the remainder randomly selected. The top scoring outputs were inspected by experts to establish confident (grade A), likely (grade B), possible
(grade C), and unlikely lenses. In this paper we combine the citizen science and machine learning classifiers into an ensemble, demonstrating that
a combined approach can produce a purer and more complete sample than the original individual classifiers. Using the expert-graded subset as
ground truth, we find that this ensemble can provide a purity of 52 ± 2% (grade A/B lenses) with 50% completeness (for context, due to the rarity
of lenses a random classifier would have a purity of 0.05%). We discuss future lessons for the first major Euclid data release (DR1), where the
big-data challenges will become more significant and will require analysing more than ∼ 300 million galaxies, and thus time investment of both
experts and citizens must be carefully managed.

Key words. Gravitational lensing: strong – Methods: data analysis – Methods: statistical

1. Introduction

Strong gravitational lensing, whereby light is deflected by grav-
ity to form multiple images of the background source, provides a
useful probe for a wide range of science cases, including cosmol-
ogy (e.g., Shajib et al. 2023; Li et al. 2024), probing dark mat-
ter (e.g., Powell et al. 2023; Wagner-Carena et al. 2024), galaxy
evolution (Sonnenfeld et al. 2019; Etherington et al. 2023), and
probing the early Universe (e.g., van Dokkum et al. 2024). With
the commencement of the Euclid Wide Survey (EWS, Euclid
Collaboration: Scaramella et al. 2022), and the forthcoming start
of the Legacy Survey of Space and Time (LSST, Ivezić et al.
2019), the field of strong lensing will undergo significant ad-
vances, with the number of strong lens systems known expected
to increase to around 100 000 (Collett 2015; Holloway et al.
2023; Pearson et al. 2024). Furthermore, the large-scale spectro-
scopic confirmation of perhaps 10 000 of these systems using the
4Most Strong Lensing Spectroscopic Legacy Survey (4SLSLS,
Collett et al. 2023) will allow for population-level analysis on a
scale not seen to date.

The Euclid satellite (Euclid Collaboration: Mellier et al.
2024), which launched on 1 July 2023, aims to survey
14 000 deg2 of the sky. In comparison to LSST, a ground-
based seeing-limited (0 .′′8) survey, the EWS will provide higher-
resolution imaging (0 .′′16 in IE, Euclid Collaboration: Cropper
et al. 2024; Euclid Collaboration: McCracken et al. 2025) over
a comparable area, but to a shallower depth (LSST: r ≃ 26.91,
Euclid: IE ≃ 26.2, Euclid Collaboration: Scaramella et al. 2022).
⋆ e-mail: philip.holloway@physics.ox.ac.uk

1 https://www.lsst.org/scientists/keynumbers

The Euclid Quick Data Release (Q1, Euclid Quick Release Q1
2025), comprising of 63.1 deg2 of imaging, provides an excellent
test-bed for current strong-lens-detection algorithms.

To date, strong lenses have been found by a range of differ-
ent methods and classifiers (see Lemon et al. 2024 for a review),
including arc- and ring-finding algorithms (e.g., Seidel & Bartel-
mann 2007; Sonnenfeld et al. 2018), machine learning (hereafter
ML), such as neural network classifiers (e.g., Pearce-Casey et al.
2024; More et al. 2024; Melo et al. 2024; Cañameras et al. 2024;
Nagam et al. 2025), through visual inspection by strong lens
experts (Faure et al. 2008; Jackson 2008; Pawase et al. 2014),
and crowd-sourced through citizen science (e.g., Marshall et al.
2016; More et al. 2016; Sonnenfeld et al. 2020; Garvin et al.
2022; González et al. 2025). The citizen science search con-
ducted by Garvin et al. (2022) used archival Hubble Space Tele-
scope (HST) data over roughly half the area (27 deg2) of the
Q1 data, identifying 167 A or B-grade candidates. Due to the
wide range of possible lens configurations, the rarity of strong
lens systems, and the high rate of strong-lens mimics (e.g., high-
redshift/faint spiral galaxies, ring galaxies, chance alignments,
etc.) that vastly outnumber true lenses, state-of-the-art lens clas-
sifiers still suffer from a ‘false positive problem’ (Holloway et al.
2024), where non-lenses dominate the high-scoring sample from
lens classifiers. To date, these false positives have had to be iden-
tified and removed manually.

The EWS presents a challenge to the strong lensing com-
munity. The methods used to find the lens systems must be
scalable to the billions of galaxy systems this survey will de-
tect. Furthermore, since strong lensing is a rare phenomenon,
these methods must either have sufficiently low false positive
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rates (FPR ≲ 10−3) that their lens samples are not dominated
by non-lenses, or any subsequent analysis must be done in a
manner that accounts for possible contamination (Holloway et
al. 2025 in prep.). In Holloway et al. (2024), the benefits of an
ensemble classifier were investigated using data from the Hyper-
Suprime Cam (HSC) Subaru Strategic Program (Aihara et al.
2019), whereby multiple lens classifiers (both ML and citizen
science) were combined together to provide a purer and more
complete lens sample. In this work, we extend this analysis to
Euclid data, and investigate the scalability of the Euclid Strong
Lens Discovery Engine to the full EWS. Ensemble classifiers
have been used in previous lens searches (e.g., Schaefer et al.
2018; Andika et al. 2023; Cañameras et al. 2024; Nagam et al.
2025); typically averaging the scores of individual ML classi-
fiers. Here we include an additional calibration step to account
for the variation in performance between classifiers. This paper
aims to answer the following questions.

1. How well can such an ensemble of strong lens classifiers per-
form when applied to high-resolution space-based data?

2. How does this classifier performance translate into the result-
ing purity and completeness, and based on this, how would
this translate into the number of systems requiring inspection
in forthcoming Euclid data releases?

3. Given the large number of strong lens candidates anticipated
in DR1 and future releases, is it possible to use inspection by
citizens in lieu of using strong lensing experts?

4. What will the best strategy be for future lens searches to
make best use of the individual strengths of a diverse range
of strong lens classifiers?

This paper is part of a series outlining the findings of a strong
lens search in the Q1 data. Euclid Collaboration: Walmsley et al.
(2025, hereafter Paper A), details the source selection, search
procedure, and final strong lens candidate catalogue. Euclid Col-
laboration: Rojas et al. (2025, Paper B) details lens candidates
identified in Q1 data after pre-selecting high-velocity galaxies
from the Sloan Digital Sky Survey (SDSS) and from Dark En-
ergy Spectroscopic Instrument (DESI) spectra, in addition to the
generation of one of the training sets used for the ML and cit-
izen science searches. Euclid Collaboration: Lines et al. (2025,
hereafter Paper C) details the primary machine learning models
used for finding lenses in this search. Euclid Collaboration: Li
et al. (2025, Paper D) focusses on the double-source plane lens
(DSPL) candidates, including modelling of these systems and
the outlook for the full DSPL Euclid sample.

This paper is structured as follows. In Sect. 2 we describe the
data used in the Q1 strong lens search, the individual classifiers
applied to these data, and the expert-grading of lens candidates.
In Sect. 3.1 we calibrate each of these classifiers, and combine
these into an ensemble in Sect. 3.2. We discuss results in Sect. 4,
including performance of a range of ensemble classifiers (Sect.
4.1), and the strengths and weaknesses of citizen and ensemble
classifiers (Sect. 4.2). We then discuss the outlook for Euclid
DR1 (Sect. 4.3), and conclude in Sect. 5.

2. Data

For the Q1 strong lens search, we selected IE-detected extended
objects with IE < 22.5 which did not have Gaia counterparts
from the Q1 MER catalogue (Euclid Collaboration: Romelli
et al. 2025, see Paper A for the complete selection). This se-
lection produced 1.09 × 106 sources. Cutout images were then
generated using the ESA Science Archive Service and the ESA

Datalabs platform (ESA Datalabs 2024). In this work, we use
eight ML networks produced by five different teams, applied
to these sources, along with classifications for roughly 10% of
these from the Space Warps citizen science search2 (as described
in Paper A). For clarity, we briefly describe the individual clas-
sifiers used in this ensemble below, but direct readers to Paper
A for a comprehensive overview of the source selection, search
procedure, and final catalogue of identified Q1 lenses, and Paper
C for detailed descriptions of the performance and architectures
of the primary five networks (Models 1, 2a, 3a, 4, and 5 listed
below). In this work we also use 3 additional networks (Models
2b, 3b, and 3c described below) prepared by these teams. Each
classifier was shown 10′′ cutouts. These cutouts were generated
using one or both of two colour scalings: ‘arcsinh’ and ‘MTF’
(i.e., ‘midtone transfer function’, defined in Paper A), using dif-
ferent combinations of the Euclid band-passes, as described be-
low and summarised in Table 1.

– Model 0: Space Warps (see Paper A). The Space Warps
strong lens search involved around 1000 citizens who made a
total of 800 000 classifications. Unlike the machine learning
classifiers, who were shown all the images in the data set, the
citizens classified a subset of 115 000 cutouts, which were ei-
ther high-scoring objects from the ML classifiers (80 000), or
randomly drawn from the complete data set (40 000 includ-
ing overlap). Each cutout was classified an average of 7.2
times by citizens; low scoring objects were removed from the
platform after six classifications. The citizens were shown
both arcsinh and MTF colour settings, using the IE, YE, and
JE bands.

– Model 1: This network (adapted from Domínguez Sánchez
et al. 2018; Manjón-García 2021) was a 4-layer Convo-
lutional Neural Network, trained using a range of simu-
lated lens systems, including 64 grade A and B lens candi-
dates from the Galaxy Zoo (Lintott et al. 2008) Euclid and
Cosmic-Dawn projects. The network was applied to the IE-
band-only data set, where the networks’ outputs using the
MTF and arcsinh colour settings were averaged to produce
the final result.

– Model 2 (a,b): These OU-100 Convolutional Neural Net-
works (adapted from Wilde et al. 2022) were trained using
(a) IE-band-only, and (b) IE and JE bands, respectively, with
the MTF colour setting. The training set totalled 32 000 non-
lenses and simulated lenses, of which 12% were lenses. In
addition to simulated lens systems, the training set included
around 200 grade A and B lens candidates identified in Eu-
clid imaging. These real Euclid lens candidates were iden-
tified in searches of Early Release Observation (ERO) data
(Acevedo Barroso et al. 2024), through inspection of galax-
ies with spectroscopic data (Paper B), Galaxy Zoo Cosmic
Dawn and Galaxy Zoo Euclid projects, as well as serendip-
itous discoveries. Class weights were applied to ensure that
non-lenses and lenses were weighted equally overall.

– Model 3 (a-c): These networks were adapted from Euclid
Collaboration: Leuzzi et al. (2024) and had IncNet (a,
Szegedy et al. 2015, 2016), ResNet (b, He et al. 2016; Xie
et al. 2017), and VGG (c, Simonyan & Zisserman 2015) ar-
chitectures respectively. They were trained using 40 000 IE

band-only images (non-lenses and simulated lenses) using
the arcsinh colour setting.

– Model 4: Zoobot (see Paper C and Walmsley et al. 2023):
This Bayesian Neural Network was pre-trained using 9.2 ×

2 https://www.zooniverse.org/projects/aprajita/
space-warps-esa-euclid
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107 morphological classifications from the Galaxy Zoo
project (Lintott et al. 2008), and subsequently fine-tuned us-
ing verified non-lenses in Dark Energy Spectroscopic Instru-
ment data (DESI, Euclid Collaboration: Rojas et al. 2025)
and simulated lenses. This classifier was shown IE-band-only
arcsinh cutouts.

– Model 5: This network (derived from Chen et al. 2020;
Oquab et al. 2023; Smith et al. 2024) was pre-trained us-
ing self-supervised contrastive learning with a Vision Trans-
former (VT) backbone using 14× 14 patches on 80 000 sim-
ulated lens images, and 80 000 non-lens images, including
ring galaxies, mergers, and spirals. The training images used
the IE band and arcsinh scaling. Two augmented views of
each image were generated using transformations, includ-
ing resizing, horizontal flips, colour jitter, and Gaussian blur.
A contrastive loss function, scaled by a temperature pa-
rameter, was applied to maximise similarity between posi-
tive pairs (different views of the same image) and minimise
similarity between negative pairs (different images). During
fine-tuning, curriculum learning was applied with an initial
warm-up phase of five epochs with uniform sampling, fol-
lowed by dynamic sample weighting and hard-example min-
ing. Hard examples were identified using misclassification or
low-confidence predictions, with their weights adjusted pro-
gressively to prioritise challenging samples in later epochs.

Following the application of the five primary networks (Mod-
els 1, 2a, 3a, 4, and 5) and while the Space Warps search was
ongoing, the highest scoring 1000 systems from each of the
networks, along with roughly 2700 high-scoring systems from
Space Warps (with Space Warps score pSW > 10−5) were in-
spected by strong lensing experts in a phase called ‘Galaxy
Judges’ (hereafter GJ, see Paper A). In total, 7700 systems were
inspected, identifying 250 grade A systems (confident lens) and
247 grade B systems.

3. Method

3.1. Calibration of strong lens classifiers

To combine multiple classifiers into an ensemble, their outputs
need to be calibrated. Here we define calibration as the function
that maps the output score of a classifier to the probability that
a system with that score is a lens. This calibration accounts for
any over- or under-confidence in any particular classifier, per-
haps due to differences in training sets, activation functions, or
data processing in the images they were shown. The calibration
of these classifiers requires a ground truth, a set of objects for
which their true type (i.e., lens or non-lens) is known. For this
work, since strong lens systems are rare and the majority do not
have spectroscopic confirmation, unless stated otherwise, we use
the grade A and B lenses from GJ described in Paper A as ‘true
lenses’, and assert that all other systems (ungraded or graded as
a non-lens) are not lenses. Unless stated explicitly grade C can-
didates were also treated as non-lenses since in reality these are
typically not lensed systems. Therefore, in this work, the proba-
bilities produced following calibration reflect the probability that
a system is a grade A or B quality lens. Due to the large num-
ber of classifiers applied to this lens search, and because high-
scoring systems from all of these were inspected by lens experts
and passed to Space Warps, it is reasonable to assume the ma-
jority of the lens systems were identified. Analysis in Paper C
suggests 65% of grade A and B lenses were found in the Q1 lens
search, with the vast majority of those missing being grade B.

Fig. 1. Validation of calibration curves, applied to the distinct test set
of data. The best performing classifiers can be calibrated up to high
probabilities, since their highest-ranked candidates have a high purity.
Curves that follow the y = x line are indicative of accurate calibration,
where the calibrated probabilities (x-axis) match the fraction of grade
A+B systems with that score in the test set (y-axis). 1σ uncertainties
(shaded regions) are calculated via bootstrapping on the test set.

The analysis in this paper should therefore be seen as conserva-
tive. Since some true lenses will have been labelled here as non-
lenses (since non-inspected systems are classed as non-lenses in
this work), the model performance will be underestimated. This
would likely be most significant at lower model scores, which
were not all inspected by experts.

The best calibration method identified in Holloway et al.
(2024) was isotonic regression (Zadrozny et al. 2002). This cali-
bration method assumes that the mapping from the output of the
classifier to the lens probability is a monotonically increasing
function, i.e., the higher the score that a classifier gives to a par-
ticular system, the more likely the system is strongly lensed. We
split the data into two equal sized data sets, forming a ‘calibra-
tion set’ (on which the calibration curves were calculated), and
a ‘test set’. Since we did not adjust the calibration methodology
from Holloway et al. 2024 we did not use a separate validation
set. We show the calibration mappings produced by this isotonic
regression method in Fig. A.1. We validated the calibration on
the test set, as shown in Fig. 1, where we measure the ratio of the
number of lenses to the total number of systems with a given cal-
ibrated probability. If the calibration is accurate, this ratio would
be equal to the calibrated probability. We find the calibration is
accurate across the range of lens classifiers, and across many or-
ders of magnitude. The best performing classifiers (Models 0,
1 and 4) can be calibrated up to high-lens fractions O(1), while
models such as 3b and 3c can only be calibrated over a smaller
range, since their highest scoring systems contain a compara-
tively low fraction of lenses. We find some underconfidence in
Model 0 at high lens fractions, indicating some inflexibility in
the calibration which assumes the lens fraction increases mono-
tonically with model score. Having calibrated each classifier, we
combined them into an ensemble, described in Sect. 3.2.
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Table 1. Summary of the models used in this work, as well as a summary metric of their performance, the purity (%) at 50% completeness (P50),
as measured on the test set. The P50 value for Model 0 was calculated using the systems in the ‘random’ 40 000 data set described in Sect. 2
for representative comparison. We denote the approximate training set size by Ntrain – in the case of Model 0 (Space Warps), this is given by the
median number of training images seen by the citizens.

Model Type Bands Ntrain Scaling P50

0 CS IE, YE, JE 12 MTF & arcsinh 68
1 CNN (4-Layer) IE 3 × 104 MTF & arcsinh 2.1
2a CNN (OU100) IE 3 × 104 MTF 0.36
2b CNN (OU100) IE, JE 3 × 104 MTF 0.34
3a CNN (IncNet) IE 4 × 104 arcsinh 0.14
3b CNN (ResNet) IE 4 × 104 arcsinh 0.08
3c CNN (VGG) IE 4 × 104 arcsinh 0.07
4 CNN (BNN) IE 9 × 107 arcsinh 7.3
5 VT IE 1.6 × 105 arcsinh 0.15

Fig. 2. GJ grades of the top 5% ranked subjects from the Space Warps
search; the bins are stacked, so the envelope represents the combined
purity of grade A+B+C candidates out of the total inspected (dashed
line) in each bin. The vertical lines indicate the median rank of lens
candidates of each grade; higher-grade lens candidates receive succes-
sively higher scores from the citizens.

We also investigate citizen scientist grades as an alternative
source of ground truth. Given the number of systems that lensing
experts can grade is limited, the possibility of citizens providing
equivalent grading is of interest. Figure 2 shows the distribution
of grade A, B, and C lens candidates as identified by GJ, in the
highest scoring 5% of systems identified by Space Warps. We
find that the citizens are most confident at identifying higher-
grade lens systems, which receive successively higher scores.
Given this and the strong performance of the citizen scientists
(see Model 0 in Fig. 3), we investigated if it was possible to use
this classifier as a ground truth for the purposes of calibrating
the ML classifiers. While the calibration of Model 0 was over-
confident at low lens-fractions, in the primary region of interest
(i.e., high probability), the calibration was accurate. We trialled
two methods for this to determine if a more rigorous method
performed significantly better.

1. Calibrating the output scores of Model 0 (Space Warps) us-
ing the original GJ ground truth as previously, but then cali-
brating the remaining models (1–5) using the now-calibrated
Model 0 probabilities as a ground truth. To do this, for the
second calibration of Models 1–5 we drew samples from the
calibration set assigning binary classification values accord-
ing to the calibrated probabilities from Model 0 each time.
We then averaged over the calibration curves produced by

each set of samples. In this manner, we accounted for the
fact the calibration of Model 0 produced probabilities, rather
than binary classifications.

2. Using a simple threshold in score for Model 0, defining all
systems above this threshold as ‘lens’ and vice versa.

We tested both of these methods on the test set, using the original
ground truth from GJ and describe the results in Sect. 4.

3.2. Combination of classifiers into an ensemble

Having calibrated the individual classifiers, they were then com-
bined into an ensemble. The range of classifier types, training
data, and network architectures produced outputs that typically
show little correlation for the vast majority of the objects in the
data set that are not lenses. A non-lens system that ranks rel-
atively highly in one classifier could receive a very low score
from a different classifier. This is beneficial, since combining
each of these classifiers together can build upon their individual
strengths and weaknesses (eight classifiers that were always in
complete agreement would provide no more information than
one classifier). Following the calibration of each network in
Sect. 3.1, we used a Bayesian approach to combine the individ-
ual networks, and treated each classifier as effectively indepen-
dent. From Holloway et al. (2024), the posterior probability that
a given system is strongly lensed (denoted below by L), having
received calibrated probabilities {Ci} from classifiers {1, ...,N} is
given by

P(L|{Ci}) =
N1−N

L
∏

N Ci

N1−N
L
∏

N Ci + N1−N
NL
∏

N (1 −Ci)
, (1)

where we have assumed a prior p0 =
NL

NL+NNL
, where NL and NNL

are the number of lenses and non-lenses in the calibration set
(249 and 542 965, respectively, in this work).

The volunteers participating in the Space Warps search were
shown a mix of high-scoring lens systems from the ML classi-
fiers, and random systems from the whole data set. Therefore
for the majority of objects, only eight classifiers were available
to form an ensemble. However, scores from all nine classifiers
(8×ML + Space Warps) were available for the systems that were
most likely be lenses.
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Fig. 3. ROC (left) and purity-completeness curves (right) of the individual models and an ensemble of all nine models in this work, applied to the
test data set. This ensemble was calibrated using the calibration set, assuming a ground truth of GJ grade A and B lenses. 1σ uncertainties (shaded
regions) are calculated via bootstrapping on the test set. The dotted line in the ROC curve indicates the performance of a random classifier. *Model
0 (Space Warps) was applied to a mix of high-scoring ML systems and randomly selected galaxies. The ROC curve for Model 0 plotted here is
generated using only the random subset (40 000) of the full 1 million sample, and hence has larger statistical noise. The completeness measurement
for this classifier in particular is taken as if the citizens saw the whole data set, which would be unfeasible for future data releases (see Sect. 4.3).
The curve for the ensemble is generated using the full test set, however.

Fig. 4. ROC (left) and purity-completeness curves (right) of the ML classifiers, and three iterations of an ensemble generated using Model 1, 2a
and 4. These ensembles were calibrated using a ground truth of GJ (GT: GJ), Space Warps calibrated probabilities (GT: SWcal), and Space Warps
binary outputs (GT: SWraw, using a raw SW score threshold of p = 1 − 1.5 × 10−8)
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4. Results and Discussion

4.1. Ensemble-classifier performance

We find that the ensemble classifier made from all nine classi-
fiers provides significant improvement in purity and complete-
ness over the individual ML classifiers.

Figure 3 shows the receiver operating characteristic (ROC)
and purity-completeness curves of the individual classifiers, and
that of the ensemble. To produce these, we used the expert-
grades from GJ as a ground truth (in particular defining grade
A and B systems to be lenses, and all other systems, graded or
otherwise, to be non-lenses). In this case, the ensemble provides
significant improvement over the ML classifiers, achieving 52%
completeness at 50% purity. If grade C systems are excluded
entirely from the analysis (i.e., not treated as non-lenses), this
metric further improves to 61% completeness, indicating some
remaining high-scoring ensemble systems are grade C candi-
dates. The low purity achieved by some models is indicative of
the rarity of strong lens systems; false positive rates ≲ 10−3 are
required for the resulting sample not to be dominated by non-
lenses, which is difficult to achieve. The volunteers participating
in the Space Warps search were shown a mix of high-scoring
lens systems from the ML classifiers, and random systems from
the whole data set. In Fig. 3, we plot the Model 0 results for only
the random subset to allow comparison between classifiers. Due
to the smaller size of the random data set (and corresponding
presence of fewer lenses) there is a much larger statistical noise
in this model’s curve. The Space Warps classifier is limited in
the number of systems it can classify (to about 100 000 in this
search). Figure 3 shows that Model 0 performs very well on the
random data set achieving ≳ 70% completeness at 50% purity (in
the RH panel). However, since lenses are very rare and the total
citizen-inspection budget is limited, in the future systems will
have to be pre-screened by ML models to maximise the number
of lenses identified (see Sect. 4.3). The flexibility of the ensem-
ble to account for different numbers of classifiers for each system
means it can provide a ranked list of lens candidates across the
whole data set rather than a subset, and with performance close
to that if the citizens had inspected the complete data set.

Figure 4 shows the ROC and purity-completeness curves for
only the ML classifiers, along with the results from a range of
ML-only ensembles. These are generated using the same test set
(and with the same GJ ground truth to define the FPR and TPR)
as in Fig. 3. Here we focus on the ensemble performance and re-
fer readers to Paper C for greater discussion of the performance
of the individual ML models. We find the best ML-only ensem-
bles (which are plotted in Fig. 4) are generated using a subset of
the ML classifiers (in particular, Models 1, 2a, and 4). This per-
mutation of models was identified by adding these classifiers one
by one to the ensemble until the performance peaked. The dif-
ference between an ensemble of Models 1,2a and 4 versus Mod-
els 1-5 was marginal and within the uncertainty. Given the very
rapid timescale in which the networks had to be trained and op-
timised for Q1 data (about 1 week), the relative performance of
the networks used in this work would likely change, and the in-
dividual networks would further improve significantly, in future
data releases. As described above, we generated these ensembles
by calibrating the networks using three different ground truths;
the original GJ grades, the Space Warps probabilities (SWCal,
themselves calibrated using GJ), and the raw Space Warps out-
put (SWraw, calibrating the networks by defining a ‘lens’ to be
all systems with p ≥ 1 − 1.5 × 10−8, based on the position of the
‘knee’ in the Space Warps ROC curve). We find the benefits of
combining the networks to be smaller than that of combining the

ML and Space Warps classifiers in Fig. 3. However, we do see
an improvement in classification using all of these ground truths
for calibration. This hints at the possibility of citizens substi-
tuting for expert grading at the larger scales of the forthcoming
data releases, which we discuss further in Sect. 4.3. In Appendix
B we demonstrate that calibration is a necessary step prior to
combining different models into an ensemble. We find that sim-
ply averaging the uncalibrated model outputs produces a much
lower performing classifier than first applying calibration and
then combining them via the Bayesian framework used in this
work.

We also investigated the scatter between the calibrated prob-
abilities produced by the models. We found that this scatter
loosely correlated with the error (|Truth − Pred|) on the ensem-
ble probability, i.e., systems were more likely to be misclassi-
fied by the ensemble when there was greater disagreement be-
tween constituent models. However, many high-grade systems
classified correctly by the ensemble also had large scatter in cal-
ibrated probability between models. This derived primarily from
the varying performance between models – only the best per-
forming models could be calibrated up to high-probability val-
ues (see Fig. 1). This resulted in high scatter by default for likely
lens candidates, since only the best models could assign prob-
abilities O(1). We found that the highest correlation in model
outputs was between classifiers which shared a common train-
ing set (models 3a,b,c and models 2a and 2b). We also found
correlation between models 1 and 4 (the best performing ML
models), with Spearman’s rank correlation ρ = 0.56. This corre-
lation decreased (ρ = 0.25) when only considering grade A and
B lenses, suggesting they still identified different types of lens.

4.2. Systems identified by citizens or ensemble

The ML and citizen science classifiers are naturally very differ-
ent, and have their own strengths and weaknesses. These may
arise from the particular data sets used to train both sets of
images (for example, citizens only see a small fraction of the
training images that an ML classifier would see), and the in-
trinsic strengths of the classification method (ML classifiers are
excellent at rapid pattern detection, but may struggle with sys-
tems which are out-of-distribution such as rare artifacts). Fig-
ure 5 shows the ensemble posterior probability from a ML-only
ensemble (from Models 1, 2a, and 4), versus that of a ML +
Space Warps ensemble (all nine classifiers), along with a selec-
tion of cutouts of those identified by the ML-only and ML +
Space Warps ensembles. As expected, systems for which both
the ML-only and Space Warps + ML ensembles have high pos-
teriors are good lens candidates, including many grade A’s. Sys-
tems for which the networks produced high scores but which
were rejected by citizens have a range of morphologies. These
include those with similar arc-like features (such as face-on spi-
ral galaxies), artefacts, and very bright stars that may not have
commonly featured in training sets. There were some systems
that were ranked highly by citizens but that received lower scores
from the networks. Considering just the random sample (i.e.,
that inspected by both ML and citizen classifiers), 2 (16) A/B
grade systems were ranked within the top 10% (1%) of systems
by citizens but did not appear in the top 10% (1%) of any net-
work. These include candidates that were mis-centred and those
in crowded fields, and are typically B-grade.

Based on the PyAutoLens modelling (Nightingale et al.
2021) discussed in Paper A, we investigated correlations in clas-
sifier score and modelling properties. Here we restricted our cal-
culations to lens candidates with successful lens models, judged
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Fig. 5. Plot of the lens posterior from an ML-only ensemble compared to from a ML+Space Warps ensemble. Systems that receive both a high
ML-only posterior and a high ML+Space Warps posterior are the most likely lens candidates. A selection of systems identified by both the ML-
only and ML+Space Warps ensembles are shown in the top right, while those only identified by the ML ensemble (ML+Space Warps ensemble)
are depicted in the top left (bottom right). Examples of systems rejected by both ensembles are depicted in the bottom left. Cutouts are highlighted
by their grade from GJ where available (A: gold, B: silver, C: bronze, Non-lens: red, Ungraded: black). In the central plot, we depict the average
(grade A+B) lens fraction, showing that the highest purity can be achieved when both ensembles are in agreement.

to be lenses (see Paper A). This modelling provided estimates of
the lensed/unlensed magnitudes, Einstein radius, and signal-to-
noise ratio. We find the ML + Space Warps ensemble classifier
score correlates most significantly with magnified source magni-
tude (ρ = 0.5), along with total signal-to-noise ratio (ρ = 0.47).
The Space Warps classifier is most correlated with the Einstein
radius (ρ = 0.3), implying the human inspectors are more likely
to identify large Einstein radius systems. The selection function
of the human inspectors was measured as part of the lens search,
and is discussed in Paper A.

4.3. Outlook for DR1 and future data releases

In this work, we have used expert grades as a ground truth. With
4SLSLS (Collett et al. 2023) it will become possible to use spec-
troscopically confirmed (and spectroscopically refuted) systems
instead, to aid with the calibration of lens classifiers. Prior to this,

the ranked outputs of an ensemble classifier in DR1 could also be
used to prioritise 4SLSLS follow-up. Figure 6 shows the number
of true lenses and false positives which would be expected as a
function of purity in the full EWS, based on the performance of
the Space Warps + ML and ML-only ensemble classifiers. For
the former ensemble, we find that a small majority of the A/B-
grade lenses (52%) would be identified in a 50% pure sample.
Given our definition of ‘lens’ to be grade A or B candidates in
this work, it is likely that some of the other 50% would be grade
C candidates. The best ML-only ensemble would achieve 25%
completeness for the same purity, highlighting the value of com-
bining citizen and ML approaches.

To achieve significantly higher completeness would involve
expert inspection of an increasingly large number of false posi-
tives, which would rapidly become intractable. However, given
the rapid improvement of lens classifiers over time, the much
larger catalogue of Euclid strong lens systems now available
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Fig. 6. Estimate of the number of true and false positives which would
be identified by a classifier with the performance of the ensemble clas-
sifiers in this work. The bold curves show the performance of the
network-only ensemble, while the faint curve shows that of the full nine-
classifier ensemble; the latter being an optimistic scenario, given citizen
classifications likely would not be available for a data set significantly
larger than the Q1 data set used in this work. The total number of lens
systems has been scaled to reflect the number of grade A and B lenses
found in Q1. Completeness values for two illustrative purity thresholds
are shown by the dotted lines.

(Paper A) for training and validation, and the fact that the net-
works applied to Q1 had to be optimised over a very short
timescale, it is likely that classification performance will im-
prove further prior to DR1. The large number of classifications
of Euclid cutouts now available from both citizens and expert
graders will provide a rich data set from which to re-train the ML
classifiers, particularly on difficult false-positive systems. This
will likely occur iteratively following each future Euclid data re-
lease, allowing the models to continuously improve over time.
Similarly, active learning, whereby a ML model is retrained iter-
atively based on new labels from the most informative systems
(see for example Walmsley et al. 2020, 2022) would enable such
improvements to occur concurrently with future lens searches.
Furthermore, rapid, large-scale modelling of lens systems (e.g.,
Poh et al. 2022; Gentile et al. 2023; Schuldt et al. 2023; Erickson
et al. 2024; Busillo et al. in prep.; Venkatraman et al. in prep.)
will provide an additional measure for the plausibility of can-
didate lens systems, and therefore we anticipate that a higher
completeness than estimated here is achievable.

4.3.1. How best to ‘spend’ the visual inspection budgets in
DR1

Unlike ML classifiers, the number of images that both citizens
and strong lensing experts can inspect is limited. Therefore, it
is crucial to carefully manage what images are shown to citi-
zens to identify the most lenses. For context, in the Q1 Space
Warps lens search, around 1000 volunteers made 800 000 clas-
sifications of 100 000 cutouts over a period of 2 months. Wider
advertisement of the project to the public could boost these num-
bers. For example, a Space Warps strong lens search using HSC
data (Sonnenfeld et al. 2020) was featured on a US national radio
channel, and received 2.5 × 106 classifications from 10 000 vol-
unteers, also over a 2 month period. Furthermore, more relaxed
time constraints for DR1 inspection and analysis compared to
Q1 will help increase both the citizen and expert inspection bud-

gets. However, there remains a limit to the number that can be
inspected. The citizens in the Q1 lens search were shown a mix
of cutouts of high-scoring systems, and random cutouts from
Q1 data. While showing a small number of randomly selected
galaxies can help identify unusual lens configurations, a purely
random selection of systems to the volunteers would not include
the vast majority of lens systems (only about 70 lenses in a ran-
dom selection of 100 000 cutouts using the Q1 pre-selection).
This therefore supports a two-stage approach, whereby ML clas-
sifiers are applied to the full DR1 data set, of which a subset
(likely a few thousand) are inspected by experts to verify the
performance of the networks. The ML classifiers would then be
collated into an ensemble, and the resulting ranked list could be
used to inform which cutouts are shown to citizens. The strong
lensing experts who took part in GJ inspected and graded 7000
images over roughly 3 months. The DR1 data set will be 36
times larger than the Q1 data release, but the inspection capac-
ity of expert graders will likely remain similar. Given the longer
timescale, it is possible that experts will inspect a larger sample
so we consider two scenarios here. We first scale our results by
a factor of 36× to that of the DR1 area (in particular on the num-
ber of lenses/non-lenses above a given model threshold), then
make cuts based on realistic inspection limits to calculate the to-
tal number of lenses which may be found. Based on the test set
used in this work (and assuming for the moment that a similar en-
semble was produced, perhaps via the calibrated Q1 networks),
the highest-ranked 100 000 systems from an ML-only ensemble
would contain 9100 grade A/B lenses, out of a total of 15 000
detectable systems in DR1. By comparison, 7300 would be iden-
tified using the same cut on Model 1 alone. If the former were
shown to citizens, the highest ranked 5000 from a ML + Space
Warps ensemble would contain around 3900 grade A/B systems
(i.e., a fairly pure but incomplete sample). A simple cut on Space
Warps score would produce 3500 systems in the top 5000. In an
optimistic scenario, in which the citizens inspect 1 000 000 sys-
tems from an ML ensemble, of which the highest-scoring 15 000
are passed to experts, we find that approximately 7600 would be
identified if the scores from all classifiers were first combined
into a citizen+ML ensemble. Combining the scores into an en-
semble at each stage would therefore be worthwhile to produce
a higher purity sample.

Without significantly increasing the inspection capacity of
either experts or citizens, the resulting completeness would be
relatively low (< 50%). A priority for DR1 will be obtaining a
sufficient dataset (around 10 000 systems) of high-grade strong
lens candidates for followup through 4SLSLS, which based on
the current performance of the lens classifiers and anticipated
improvements will likely be met. Beyond this, the importance
of purity versus completeness will vary depending on the par-
ticular science case. While typical lens studies have focussed on
spectroscopically confirmed systems, if the contamination rate
is known, unbiased inference can be performed on impure data
sets (e.g., Kunz et al. 2007; Roberts et al. 2017; Holloway et al.
in prep.). The completeness could be improved through the auto-
mated modelling of candidates, or by adding a refinement stage
to citizen inspection as done in Marshall et al. (2016). The lat-
ter of these could also involve the citizens grading systems in
line with typical lens searches (A/B/C/X), and calibrating their
classifications to match those of experts. Additionally, applying
the SWAP methodology (Marshall et al. 2016) to the final in-
spection, whereby the final grade was a weighted average of the
experts’ grades based on their performance on a chosen train-
ing set, would increase the efficiency (and thus reduce the time
burden) of the expert grading.
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5. Summary and conclusions

In this work, we have produced an ensemble strong lens classifier
using the Q1 data release. In answer to the questions set out in
Sect. 1, we summarise our conclusions below.

1. An ensemble classifier provides significant improvement in
classification when both ML and citizen science classifiers
are used in the ensemble. In particular, the ensemble can still
be used across the whole data set, providing posterior prob-
abilities that each system is a lens, even when some classi-
fication data are incomplete (for example where citizens are
only shown a subset of the data).

2. An ensemble composed of neural networks and citizen scien-
tists produces a 52% complete sample at 50% purity, or 91%
complete at 10% purity. An ensemble comprised of only ML
classifiers produced a 25% complete sample, with 50% pu-
rity, or 56% complete at 10% purity. Due to limited inspec-
tion budgets, it is likely that future expert inspected samples
will have much higher purity than at present (e.g., 6.8% in
this work).

3. Citizen classification can produce a high-purity sample of
lens candidates, and higher-grade lenses receive progres-
sively higher scores from citizens. Citizens could stand in
for expert graders in future searches although care will need
to be taken to account for the possibility of misclassifications
and the total citizen-inspection budget.

4. Showing citizens a random selection of cutouts would only
result in a small fraction of lens systems being identified,
since the vast majority of cutouts would not contain a lens
system, and the number of images citizens can inspect is lim-
ited. Using a two-stage approach via an ML-only ensemble,
whereby citizens are only shown highly-scored systems from
this ensemble would significantly increase the total number
of lenses identified.

5. Fine-tuning machine learning classifiers by using ensemble
scores from this Q1 search as labels within their training
sets would likely diversify the range of lenses that these au-
tomated methods could identify. Furthermore, given antici-
pated lens search campaigns with future data releases, such
fine-tuning could be done iteratively as more lenses and non-
lenses are classified.

With anticipated improvements in lens classification following
this lens search, we expect more than 10 000 A/B grade lenses to
be identified in Euclid DR1, heralding the start of a new era for
strong lens science.
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Fig. A.1. Mapping from the ranking of each object in the test set to the calibrated probability, based on the isotonic regression (Zadrozny et al.
2002) procedure. We show 50 calibration curves for each model, generated by bootstrapping. The lower x-axis limit is trimmed for clarity to where
the mapping is non-zero. The limits for Model 0 are more restricted, since the citizens were only shown a subset of the whole data set, and a high
proportion of the lowest scoring systems received a calibrated probability of 0.

Appendix A: Calibration Curves for each Model

The mapping from model rank to calibrated probability for each model is shown in Figure A.1. To apply these calibration mappings
to the test set, we interpolate these rank values to the original model scores, such that the calibration function can map between model
score and calibrated probability on new data. The best performing models can achieve calibrated probabilities O(1), indicating their
highest scoring systems have a high lens purity.

Appendix B: Effect of Calibration on Classifier Combination

Figure B.1 shows the ROC curves generated from simply averaging the uncalibrated model outputs compared to first calibrating
each model before combining them in a Bayesian manner. The calibration provides significant improvement over the uncalibrated
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Fig. B.1. Comparison of the ensemble ROC curves generated via calculating the mean average of the uncalibrated model outputs (grey), versus
Bayesian combination following calibration (black). The ensemble of Models 1, 2a and 4 is shown on the right, and the ensemble of all models is
shown on the left. The ROC curves of the individual classifiers making up these ensembles are also shown as previously.

ensembles. Furthermore the uncalibrated classifier performs much worse than its constituent parts in the case of the ML-only
ensemble.
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