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ABSTRACT

We report on serendipitous Euclid observations of previously known transients, using the Euclid Q1 data release. By cross-matching with the
Transient Name Server (TNS) we identify 164 transients that coincide with the data release. Although the Euclid Q1 release only includes single-
epoch data, we are able to make Euclid photometric measurements at the location of 161 of these transients. Euclid obtained deep photometric
measurements or upper limits of these transients in the IE, YE, JE, and HE bands at various phases of the transient light-curves, including before,
during, and after the observations of ground-based transient surveys. Approximately 70% of known transients reported in the six months before
the Euclid observation date and with discovery magnitude brighter than 24 were detected in Euclid IE images. Our observations include one of
the earliest near-infrared detections of a Type Ia supernova (SN 2024pvw) 15 days prior to its peak brightness, and the late-phase (435.9 days
post peak) observations of the enigmatic core-collapse SN 2023aew. Euclid deep photometry provides valuable information on the nature of these
transients such as their progenitor systems and power sources, with late time observations being a uniquely powerful contribution. In addition,
Euclid is able to detect the host galaxies of some transients that were previously classed as hostless. The Q1 data demonstrate the power of the
Euclid data even with only single-epoch observations available, as will be the case for much larger areas of sky in the Euclid Wide Survey.

Key words. Techniques: photometric – supernovae: general – supernovae: individual (SN 2023aew, AT 2023uqu, AT 2024pcm, SN 2024pvw,
SN 2024abla) – Surveys
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1. Introduction

The primary objective of the Euclid mission is to constrain cos-
mological parameters by observing distant galaxies (Euclid Col-
laboration: Mellier et al. 2024). Although Euclid does not focus
on time-domain astronomy, the potential exploration of the tran-
sient sky with Euclid has long been considered (Laureijs et al.
2011; Astier et al. 2014). Euclid’s high sensitivity and high res-
olution using the VIS and NISP instruments (Euclid Collabo-
ration: Cropper et al. 2024; Euclid Collaboration: Jahnke et al.
2024) make it ideal for the detection of (faint) point sources,
like transients. The discovery of AT 2023adqt by Euclid clearly
demonstrated its capability to find transients by conducting im-
age subtractions of its own images (Euclid Collaboration: Mel-
lier et al. 2024). The high near-infrared (NIR) sensitivity in prin-
ciple allows us to discover intrinsically red, dust enshrouded,
and/or high-redshift transients that often escape detection by op-
tical transient surveys. The recent discovery of high-redshift su-
pernovae (SNe) from The James Webb Space Telescope (JWST)
showed the potential of exploring NIR time-domain astronomy
from space (DeCoursey et al. 2025).

Within the Euclid survey, Euclid Deep Fields (EDFs) are
planned to be observed repeatedly throughout the survey period
(Euclid Collaboration: Scaramella et al. 2022). Although the ca-
dence of the EDF observations is sparse, many Type Ia and core-
collapse SNe are expected to be detected, providing valuable
information on their progenitor stars, rates, and intrinsic phys-
ical properties, as well as their dust formation. The Euclid ob-
servations of Type Ia SNe, combined with ground-based survey
data, can improve their use as cosmological distance indicators,
and hence improve constraints on the cosmological parameters
(Bailey et al. 2023). In addition, a large number of high-redshift
superluminous and pair-instability SNe are expected to be dis-
covered in the EDFs, depending on their uncertain event rates at
high redshifts (Inserra et al. 2018; Moriya et al. 2022; Tanikawa
et al. 2023; Briel et al. 2024).

Most of the Euclid survey time is devoted to the Euclid Wide
Survey (EWS) in which each survey field is only visited once
(Euclid Collaboration: Scaramella et al. 2022). In such a field,
it is impossible to search for transients by only using the single-
epoch Euclid data. However, live transients can serendipitously
appear in Euclid exposures, providing photometry in the optical
(IE) and NIR (YE, JE, and HE) bands.

Depending on the timing of the Euclid observation relative
to the transients’ evolution, these Euclid detections can be very
early (i.e., shortly after explosion in the case of explosive tran-
sients), very late, or at any phase in between. Early detections,
or even upper limits close to the time of explosion, are particu-
larly valuable, since they constrain the date of explosion, which
is essential to estimate the properties of their progenitors. For ex-
ample, the early photometric observations of Type II SNe have
been used to infer the progenitor radii and circumstellar environ-
ments (e.g., Gall et al. 2015; González-Gaitán et al. 2015; Förster
et al. 2018). The early observations of Type Ia SNe contain in-
formation on their progenitor systems, as well as their explosion
mechanisms (e.g., Maoz et al. 2014; Deckers et al. 2022).

Even if the Euclid observation is long before the appear-
ance of transients, the deep Euclid data will allow us to identify
the progenitors and/or host galaxies of the transients. The late-
phase observations of transients can provide information on the
amount of the radioactive nuclei (e.g., Leibundgut & Suntzeff
2003; Tucker et al. 2022), possible dust formation (e.g., Lucy
⋆ This paper is published on behalf of the Euclid Consortium
⋆⋆ e-mail: c.j.duffy@lancaster.ac.uk

et al. 1989; Kotak et al. 2009; Fox et al. 2011; Gall et al. 2011,
2014; Szalai et al. 2019), and circumstellar environments (e.g.,
Fox et al. 2013) of the transients.

The Euclid Q1 (Euclid Quick Release Q1 2025) data release
provides data corresponding to a single visit of the EDFs, and
therefore mimics what we expect to obtain in the EWS. In this
paper, we report Euclid photometry of the transients that were
identified by other transient surveys before and after the Euclid
observations of the Q1 fields. We show that in the absence of
multiple epochs for difference imaging, using PSF-fitting pho-
tometry Euclid can provide essential information on the nature
of these transients and their environments through its deep pho-
tometry from single-epoch data. This serves to underline the
prospect for transient science with Euclid in the EWS. Further-
more, it highlights the future potential for transient detection that
can be achieved through image differencing in Euclid fields with
multi-epoch observations, e.g., the EDFs.

Throughout this work, the photometric measurements are re-
ported in the AB system, unless otherwise specified. We use the
Planck 2018 flat ΛCDM cosmology model (Ωm = 0.31,H0 =
67.7 kms−1; Planck Collaboration et al. 2020).

2. Data and target selection

2.1. Q1 data products

The Q1 data release (Euclid Collaboration: Aussel et al. 2025)
contains several different data products. For the purpose of this
work we make use of the background-subtracted mosaic image
files. Euclid imaging observations are composed of four dithered
exposures taken in sequence for each filter. These have been
median-stacked to create an intermediate data product (not re-
leased as part of Q1, but anticipated for future releases), which
eliminates chip gaps and reduces the effects of artefacts such as
cosmic ray strikes. The stacked images have then been trimmed
and combined with other images to produce the mosaic image
files that correspond to predefined sky tiles. This data were ac-
cessed using the ESA Datalabs service (Navarro et al. 2024).

Since mosaic images are composites of multiple Euclid ob-
servations, they are not supplied with time information. Never-
theless, using the Euclid science archive we were able to iden-
tify which observations made up a given part of a mosaic coter-
minous with a location of interest. This allowed us to add the
necessary time information for each of the objects we consider
in this work. In future data releases we anticipate that we would
make use of the intermediate stacked image product since they
are to be provided with time information.

2.2. Target selection

Table 1. Euclid Deep Field spatial information and approximate time of
observation in Q1.

EDF Field Centre Area Date
(RA Dec) (deg2) (2024)

Fornax 03h 31m 43.s6, −28◦ 5′ 18 .′′6 10 05–08 Aug
North 17h 58m 55.s9, +66◦ 1′ 3 .′′7 20 17–19 Jul
South 04h 4m 57.s84, −48◦ 25′ 22 .′′8 23 05–08 Sep

The Q1 data release nominally covers the EDFs (see Ta-
ble 1), though in reality it is composed of the mosaic sky tiles that
overlap with the EDFs. As such, the data release covers an area
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Fig. 1. Sky regions of the three Euclid Deep fields. Top right: the EDF-North. Bottom left: the EDF-South. Bottom right: the EDF-Fornax. In each
panel the footprints of the EDFs have been overlaid with the positions of transients considered in this work. Colour coding indicates the discovery
survey. Marker shape denotes the number of Euclid filters in which we were able to make a measurement (including upper limits). Those with zero
Euclid filters had exposures available, but were not suitable for performing the photometric procedure, so no photometric measurement (or upper
limit) could be derived.

slightly larger than that defined by the EDFs. As a consequence
of this, some known transients, which we identified outside the
EDFs, have been included in this work since data is available at
their reported location (see Fig. 1 for examples of this).

We selected known transients that overlap both spatially and
temporally with the Q1 data products. In order to select a man-
ageable number of transients for consideration, we limited the
selection to relatively recent or bright transients. The selection
criteria were applied to each field separately because the Euclid
observation dates of the fields differ (see Table 1). The selection
criteria used were:

– any transient reported after the Euclid observations up to 5
December 20241;

– any transient reported up to 1 year prior to Euclid observa-
tions;

– any transient reported from between 1–3 years prior to
Euclid observations with a discovery brightness of 18 or
brighter in the band quoted by the relevant discovery survey.

A total of 164 transients reported to the Transient Name
Server (TNS)2 meet these criteria. Their positions are shown in
Fig. 1 and overlaid on the footprints of the EDFs. In Table A.1
we show the complete catalogue of (161) transients with recov-

1 Date on which target list was finalised.
2 https://sandbox.wis-tns.org
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Table 2. Discovery survey statistics of the 161 sources followed up with
Euclid, as listed in Table A.1.

Survey Number of soures
Pan-STARRSa 11
ATLASb 22
GOTOc 4
Gaiad 5
JADESe 49
WFST f 49
ZTFg 28

a Panoramic Survey Telescope and Rapid Response System, Flewelling
(2018). b Asteroid Terrestrial-impact Last Alert System, Tonry et al.
(2018a). c Gravitational-wave Optical Transient Observer, Dyer et al.
(2024). dGaia Collaboration et al. (2016), e JWST Advanced Deep
Extragalactic Survey. Eisenstein et al. (2023); DeCoursey et al. (2025).
f Wide Fast Survey Telescope, Wang et al. (2023). g Zwicky Transient
Facility, Bellm et al. (2019); Graham et al. (2019).

HE

2′′

JE

2′′

YE

2′′

IE

2′′

Fig. 2. Images of AT 2024pnv in each of the Euclid bands. The transient
is highlighted with a red circle centred on the reported coordinates from
TNS.

ered Euclid photometry that are included in this figure. The dis-
crepancy in source number arises from there being three sources
within the Q1 area that it was not possible to make any form of
measurement on. This is because they lie at the edge of the field,
or an image, making them unsuitable for the photometric proce-
dure detailed above in any filter, whilst still making up part of
the Q1 release. Table 2 details the distribution of the discovery
surveys of the transients that we follow up. In Fig. 2 we show the
Euclid images in each of the four Euclid bands of one example
transient, AT 2024pnv. In Appendix B we show the IE cutouts of
each of the targets.

3. Euclid photometry

3.1. PSF photometry

We measured the photometry of each selected transient by fitting
the point spread-function (PSF) using the ecsnoopy package3.
The PSF fitting procedure consists of several steps: modelling
the PSF on the images; subtracting the background; fitting the
source using the PSF model; and generating both a model image
of the fitted source and a residual image (the difference between
the observed data and the fitted model) to evaluate the quality of
the fit. We construct the PSF model by selecting a sample of sev-
eral dozen isolated, bright stars, using the background-subtracted
images for both VIS and the three filters of NISP.

Accurate background subtraction is crucial to account for po-
tential contamination to the PSF fitting process from the ‘local
background’, i.e., host galaxy light and any small-scale residu-
als that may remain after background subtraction during image
processing. With multi-epoch observation this can be addressed
using template subtraction, particularly when the transient is lo-
cated within a bright galaxy, near a galaxy nucleus, or embed-
ded in a compact galaxy. However, since we only have a sin-
gle epoch of observations, template image subtraction cannot
be applied here, and we must estimate the ‘local background’
around the transient position. In order to do this we interpo-
late the counts measured outside a circular region centred on the
source, typically with a radius of twice the Full Width at Half
Max (FWHM; depending on the specific case). This value was
then subtracted from the counts at the transient’s position. The
‘local background’ noise was quantified as the standard devia-
tion of the local background counts.

In the fitting process, the PSF centre is allowed to shift to
account for uncertainties in the transient coordinates reported by
the discovery survey. The offset between the coordinates of the
source detected on Euclid image and the coordinates of the tran-
sient reported by TNS is then measured (see Table A.1).

We note that a source detected in the single-epoch Euclid im-
age, without a template image as reference, may not correspond
to the transient reported by the TNS. It could instead be a nearby
contaminating stellar source, a compact H ii region, or, for more
distant sources, an unresolved host galaxy. On the other hand,
some transients labelled by Lasair as an orphan (see Sect. 4.2),
i.e., those lacking a detected host galaxy, are detected in the Eu-
clid images near a faint extended source – likely the host galaxy
– that is only visible due to the superior depth of the Euclid ex-
posures. This highlights the potential of the Euclid images for
various applications, such as identifying the hosts of apparent
orphan transient sources (see Sect. 6) or pinpointing the progen-
itor stars of nearby transients.

With these considerations in mind, the significance of a de-
tection using PSF-fitting can be defined in terms of several fac-
tors: the S/N of the detection; the positional uncertainties of the
source; and the potential presence of a host galaxy, particularly
for orphan transients. A detection is considered significant if the
fitted source is clearly distinguishable from background noise
(i.e., the ratio between the peak of the fitted PSF and the ‘lo-
cal background’ noise in the residual image exceeds 2.54. Ad-
ditionally, the source’s position must align within a reasonable
3 ecsnoopy is a Python package developed by E. Cappellaro for tran-
sient photometry through PSF-fitting and/or template subtraction. It ex-
tensively utilises astropy (Astropy Collaboration et al. 2022) and, in
particular, photutils (Bradley et al. 2024). A detailed description of
the package is available at http://sngroup.oapd.inaf.it/ecsnoopy.html.
4 The detection threshold and S/N over the full stellar profile are re-
lated for a given profile width (Harris 1990). For Euclid, where stars

Article number, page 4 of 27

http://sngroup.oapd.inaf.it/ecsnoopy.html


C. Duffy et. al: Euclid: Q1. Photometric studies of known transients

original snfit

AT2024gja

residual full fit

original x 0.5

AT2024tmf
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AT2024eta

residual full fit

Fig. 3. Left: Example of the PSF fitting for AT 2024gja in IE. The figure shows clockwise from top-left; a cutout of the original frame, the fitted
PSF, the full fit including PSF and background, and the residual after subtraction of the fitted source. The green circle is centred at the fitted
position, whereas the red cross marks the transient position reported in TNS. Centre: Example of the IE magnitude limit estimate for AT 2024tmf.
The limit is intended as the magnitude of the faintest source that can remain hidden in the background noise. The lower left panel shows the residual
after subtraction of a PSF with S/N = 2.5. To highlight the significance of this limit, the two right panels show the residual for a PSF scaled by
0.5 and 2.0 of the adopted limit, corresponding to a star 0.75 mag fainter and brighter, respectively, than the adopted limit. Right: Example of the
IE PSF fitting for AT 2024eta. As explained in Sect. 3.1, because of the low S/N and relatively large offset from the discovery position, for this
transient we conservatively report an upper limit of 23.6. Each cutout shown is 5′′ × 5′′.

uncertainty radius with the transient position reported by TNS
(ranging from 0 .′′1 to 0 .′′3, depending on the accuracy of the as-
trometric calibration of the survey that discovered the transient),
and there must be a clear positional offset between the transient
and the host galaxy centre (indicating that the transient is distinct
from the host in the case of orphan transients).

If the detection exceeds the S/N threshold, the positional un-
certainty is small, and there is a clear offset between the tran-
sient’s position and the centre of the host galaxy, the detection
is considered significant. However, if the S/N is low or the offset
from the TNS reported position is large, the detection is flagged
as uncertain, and an upper limit on the transient’s flux may be
reported instead.

Examples of (i) a robust detection, (ii) an upper limit, and
(iii) an inconclusive case are outlined in the following and in
Fig. 3. The three examples are as follows:

(i) The robust detection of AT 2024gja (Fig. 3, left). The de-
tected source has brightness 24.108± 0.026, S/N ≃ 30 and
a position consistent with that reported by TNS (with an
offset of 0 .′′037).

(ii) The upper limit for AT 2024tmf (Fig. 3, centre). Because
the transient is located close to the galaxy centre we could
report only a relatively bright upper limit of 21.3 in the ab-
sence of a template image to remove the host galaxy back-
ground.

(iii) The inconclusive detection of SN 2024eta (Fig. 3, right).
A faint source with IE ≃ 23.6 and S/N = 1.5 was detected
0 .′′22 away from the position reported by TNS. Conserva-
tively, we report this as an upper limit in the Q1 release.

The magnitudes measured are calibrated using the photomet-
ric zero point provided in the data release (see Euclid Collab-
oration: McCracken et al. 2025; Euclid Collaboration: Polenta
et al. 2025, for details). In addition to PSF-fitting magnitudes,
we also measured aperture magnitudes. The two measurements
show no significant systematic offset. We prefer PSF photometry
becasuse it isolates the stellar-like source and is less sensitive to

have FWHM of 2 pixels, a detection threshold of 2.5 corresponds to an
S/N of approximately 3.).

deviant pixels. As previously mentioned, and as shown in Fig. 1,
there are three sources contained within the Q1 release that were
unsuitable for the photometric procedure outlined above because
they are located near the edge of an image. Similarly, there are
several sources in Table A.1 where a detection or upper limit is
reported in one or more Euclid filters, while other filters have no
data.

3.2. Overview of photometric measurements

The photometric measurements for all sources, both detections
and upper limits, are provided in Table A.1, with more detail in
the supplementary online table. For each source, we list the mag-
nitude with its associated error, a flag indicating whether it is a
robust source detection or an upper limit, the detection thresh-
old, and, for each source detection, the distance (in arcseconds)
between the PSF fit centre and the transient position reported by
TNS. Additional notes are included where necessary.

We report detections for 59 sources in IE and 40, 36, and 30 in
YE, JE, and HE, respectively. Their magnitudes range from 17 to
26 in both VIS and NIR. In general, VIS frames are deeper and,
due to the sharper PSF, allow measurement of fainter magni-
tudes, even in brighter and more crowded backgrounds. Indeed,
the average magnitude of the detected sources is 23.0 in IE and
21.7 in JE. Because of the superior depth of the VIS images, there
were no NIR-only detections (i.e., all objects that were detected
in the NIR were also detected in the VIS image).

We also measured upper limits for 93 sources in IE and 91,
88, and 93 in YE JE, and HE, respectively. In favourable condi-
tions, such as an isolated transient, the upper limiting magnitude
for IE reaches as faint as 28. In total, we were able to obtain a
measurement or an upper limit for 163 transients reported by
TNS. This number differs from the total reported in Sect. 2.2
due to sources found at the edges of images, where it was not
possible to recover a suitable area for performing the PSF-fitting
procedure. From this point onward, we will consider only those
transients for which we were able to obtain photometric mea-
surements.
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Fig. 4. Distribution of the targets in parameter space of discovery mag-
nitude and ∆t, the discovery date minus the Euclid observation date (in
days). Those detected in the Euclid VIS image are shown with filled
symbols, while upper limits are shown with open symbols. Likely su-
pernovae are shown as circles and likely AGN or variable stars are
shown with star symbols. The colour of the symbols represents the dis-
covery survey, as in Fig. 1. The group of sources with discovery mag-
nitudes of about 26 and fainter are all from the JADES survey that was
undertaken with JWST (over a small region of sky, Eisenstein et al.
2023; DeCoursey et al. 2025), and are expected to be beyond the limit
of Euclid detection.

Figure 4 shows the distribution of our input target list in
terms of discovery magnitude and the date difference between
the transient’s discovery and the Euclid observation. From this,
we can see that the fraction of objects detected in IE increases
as the size of the time difference decreases (i.e., when Euclid
observes the transient closer to its discovery date). Excluding
sources with a discovery magnitude fainter than 24 (this is ex-
clusively JADES sources which we would expected to be too
faint for Euclid) we recover 61% of transients discovered in the
year before Euclid IE observation; this rises to 69% for those dis-
covered in the 6 months before observation, and 82% for those
discovered 100 d before observation.

Figure 5 shows the distribution of our input target list in
terms of discovery magnitude and Euclid magnitude (or, if not
detected, then the upper limit). The pre-discovery detections
allow reliable deep early-time photometry to be provided, see
Sect. 5.1 for discussion and examples. The majority of the Eu-
clid observations presented here are post-discovery, post-peak
observations. We see that Euclid is capable of recovering useful
photometry on a transient several magnitudes into the decay of
the light curve, see (Sect. 5.3 for further discussion and exam-
ples.)

4. Sources detected in other surveys

The sources that we follow up in this work have, in addition to
Euclid, been detected in several other surveys. These surveys in-
clude optical, high-cadence (typically 2–3 days), large-scale sur-

Fig. 5. Distribution of the targets in discovery magnitude (in the relevant
photometric band of the discovery survey) and Euclid IE magnitude.
Likely AGN or variable stars are shown with star symbols. Sources de-
tected in the Euclid VIS image are shown with filled symbols, while
upper limits are shown with open triangles for likely SNe or with open
star symbols for likely AGN and variable stars. The line of equal magni-
tude is shown by the dashed line. The colour of the symbols represents
the discovery survey as in Fig. 1.

veys that provide publicly accessible photometry. Though these
surveys may not have originally discovered a source, by their ‘all
sky’ nature will have made several observations of a source. It
is by combining the Euclid photometry, which we present, here
with data such as this that we can enhance the scientific impact
of Euclid data for transient science. In the following sections we
briefly present some of these surveys and some analysis of those
targets as seen by these surveys.

4.1. The ATLAS experiment

ATLAS is a network of 0.5 m telescopes (two units in Hawaii,
one unit in Chile, and one unit in South Africa, with an addi-
tional one currently in preparation in Spain), which observing
strategy provides identification and orbit constraints for near-
earth objects (NEOs) and other potentially hazardous objects.
This full-sky survey naturally provides information about many
other types of transients including SNe up to limiting magni-
tudes of about 20.5–21 in the orange (o band from 560–820 nm)
and cyan (c band from 420–650 nm) broad-band filters. Some
of the TNS objects included in the list of transients discussed in
Sect. 2.2 are ATLAS-discovered transients (Smith et al. 2020).

The ATLAS ‘forced-photometry’ server5 (Tonry et al.
2018b) provides full public access to the photometric measure-
ments over the full history of the survey which started in 2017.
Forced-photometry (i.e., photometry measured at a fixed posi-
tion) was obtained for all the sources listed in Table A.1 by us-
ing their coordinates as inputs in the ATLAS photometry server.
All measurements with fluxes of S/N ratio lower than 3 were

5 https://fallingstar-data.com/forcedphot/
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Fig. 6. Optical (r and/or o-band) light-curves for the 10 transients meeting the selection criteria outlined in Sect. 2.2, which also have a spectro-
scopic classification. The discovery time is indicated by a star symbol, and each transient is represented by a separate colour. Thin lines connect the
last ground-based photometric points with the Euclid VIS measurements, as listed in Table A.1. If the Euclid epoch was pre-discovery (the case
for SN 2024pvw and SN 2024abla), we instead connect the Euclid measurement with the first ground-based point. The 56Co decay timescale is
plotted in grey for reference. The approximate limiting magnitude of Euclid VIS imaging for an isolated point source is shown by the black dashed
line (Euclid Collaboration: Cropper et al. 2024), and a representative limiting magnitude for ground-based surveys such as ZTF and ATLAS is
indicated by the dashed grey line. Detailed light-curves for these transients are given in Figs. 7, 9, and C.1.

considered as upper limits and filtered out, as suggested on the
photometry server output description page, and the same S/N as
the Euclid detections we report. The remaining measurements
were visually inspected to isolate high-cadence, well-sampled
light curves.

4.2. The ZTF experiment

ZTF is an experiment based at the Palomar telescope. It has been
observing the full northern sky at a cadence of about two days to
limiting magnitudes of up to 20.5–21, from beginning of 2018.
The SDSS g- and r-band photometry is publicly available and
provided by several brokers (e.g., Lasair, ALeRCE, Fink; Young
2023; Sánchez-Sáez et al. 2021; Möller et al. 2021). ZTF allows
the community to explore a broad range of time-domain science.
It can be considered as a pathfinder to the Vera C. Rubin Obser-
vatory Legacy Survey of Space and Time (LSST)6 whose opera-
tions are planned to start during 2025.

Some of the TNS objects discussed in Sect. 2.2 are ZTF-
discovered transients. However, not all ZTF transients are re-
ported to TNS. To get the complete list of ZTF transients poten-
tially associated with the transients listed in Table A.1 we cross-
match the coordinates of the Euclid-measured transients with the
full ZTF database. To do so, we use the Lasair (Williams et al.
2024) watchlist tool7 with an input cross-match radius of 0 .′′5.

6 https://rubinobservatory.org
7 https://lasair-ztf.lsst.ac.uk/watchlists/

We find that a total of 42 TNS sources listed in Table A.1 have
ZTF data available at their coordinates’ location.

Embedded in Lasair is Sherlock (Young 2023) a spatially
contextual classifier, which is used to determine the likely object
classification. At its most basic Sherlock cross-matches ZTF
transients with all major astronomical catalogues that it uses to
assign the classification, e.g., AGN, SNe, and variable stars. For
sources classified as some type of transient, Sherlock also as-
signs a likely host or failing that classifies it as an orphan.

4.3. Targets detected in ZTF and ATLAS surveys

To obtain an overview of the full data sample, we produced and
inspected individual light curve plots for each of the 161 sources
detected with Euclid (see Table A.1). Each light curve includes
the Euclid epochs and photometry or upper limits in the Eu-
clid filters available, the discovery photometry from TNS and,
if available, ZTF and ATLAS photometry. The sample contains
a total of ten classified SNe while the remaining sources are un-
classified, meaning their nature is subject to light curve and con-
textual interpretations. Figure 6 illustrates how the Q1 Euclid
1 epoch snapshots provide late or early-time information on a
pool of classified SNe over a timescale of about three years. In
this figure, for transients discovered before the Euclid VIS ob-
servation, we connect the last ground-based detection with the
Euclid measurement by a thin line. Whether or not the transient
was recovered by Euclid is indicated. If the Euclid observation
was before the first transient report, we instead connect it with
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the first reported ground-based detection. Detailed fits have also
been made to the light-curves of selected transients (see Sect. 5
and Figs. 7 and 9).

A total of 42 sources are detected by ZTF, and about 60
sources are well sampled with ATLAS. From the ten classified
SNe eight are detected by ZTF and ATLAS, while two are de-
tected with ATLAS only (see plots in Figs. 7, 8, 9, and C.1).
Some of these sources are discussed in more detail in Sect. 5.
A few of the well-sampled light curves are likely from AGN
or galactic activities (e.g., AT 2021vje, Fig. C.3), or from stel-
lar activity (e.g., AT 2022bpn, Fig. C.3), as independently cor-
roborated by our Euclid image analysis and by Sherlock. Fi-
nally, a few more sources show unclear SNe-like light curves for
which the peak may not be properly sampled (e.g., AT 2024bkj,
Fig. C.3).

4.4. Poorly sampled targets

The remaining sources are generally poorly sampled and their
nature remains unclear in the absence of public spectro-
scopic classification information. Plots of the 43 faint, JADES-
discovered sources show the JWST discovery detections and the
Euclid upper limits, and no high-cadence ATLAS sampling (e.g.,
AT 2023adsv and AT 2023adts, Fig. C.4). The sample of sources
detected with the Wide Field Survey Telescope (WFST) also
show poorly-sampled light curves, but Euclid provides deeper
imaging than WFST and complementary photometry data points
for some of them (e.g., AT 2024tgn, Fig. C.4). Some statistics on
the number of sources detected in the JADES, WFST, and the
other surveys (see Fig. 1) are provided in Table 2.

5. Notable transients

5.1. Transients observed before ground-based transient
survey discovery

In this section, we show some examples of transients observed
by Euclid before the ground-based transient survey discovery
date.

5.1.1. SN 2024pvw

This transient is a known Type Ia SN (classification reported in
TNS by Syncatto & Team 2024) that was detected by Euclid
before ground-based transient surveys. Figure 7 (upper panel)
shows the Euclid and ground-based photometry on the light
curve. The Euclid detections were made in all four Euclid bands.
Such early NIR detections are very rare. These detections are 2–
3 days earlier than for any Type Ia SNe in the CSP-II Hubble
flow cosmological sample (Phillips et al. 2019), and about the
same phase as for the earliest NIR observations for the iconic
nearby Type Ia SN 2011fe (Hsiao et al. 2013).

Understanding the nature of Type Ia SNe is arguably among
the most pressing questions in SN science, especially when con-
sidering their use as precision distance estimators in cosmology.
While it is considered to be well established that these are ex-
plosions of white dwarfs (WDs), it remains unclear whether the
binary companion triggering the explosion is another WD, or
a non-degenerate star. Another issue of debate is whether the
explosion happens at the Chandrasekhar mass or if the main
Type Ia SN population used in cosmology arises from sub-
Chandrasekhar mass explosions. Early multi-wavelength obser-
vations, from hours to days after the explosion, are key for ad-
dressing these pressing questions (e.g., Maoz et al. 2014). For

example, early flux excess in Type Ia SNe is observed in 20–
30% of Type Ia SNe (Deckers et al. 2022; Magee et al. 2022)
and they are linked to the existence of a red-giant companion
(e.g., Kasen 2010), a dense circumstellar medium (CSM, e.g.,
Piro & Morozova 2016; Moriya et al. 2023), or a helium deto-
nation (e.g., Jiang et al. 2017; Ni et al. 2023). Hence, cases like
SN 2024pvw, with unusually wide wavelength range early cov-
erage including NIR, can be of substantial interest. Specifically,
deviation from t2 in the early light curve rise, even in the red-
der bands observed by Euclid, could come from heated material
of the white dwarf, or a companion star. Other instances where
a signal could be expected is for a pre-existing accretion disc.
Structures in the light curves during the first days after explo-
sion could also originate from radioactive material in the outer
parts of the progenitor white dwarf, as discussed by Goobar et al.
(2015) in connection with early observations of SN 2014J (Goo-
bar et al. 2014).

In order to quantify the significance of the early Euclid pho-
tometry of SN 2024pvw, we fit, using SNCosmo (Barbary et al.
2024), the ZTF and ATLAS light curves by using the SALT3-
NIR Type Ia SN light curve evolution model (Pierel et al. 2022).
The best fit model is presented in Fig. 7. SALT3-NIR covers
the wavelength range of 2,500 – 20,000 Å and can provide the
expected Euclid photometry at early times. The early flux mea-
surements by Euclid slightly differ from the expected NIR light
curves from the best fit model. However, given that the Euclid
NIR flux measurements are performed without conducting im-
age subtractions and hence the measured flux may be contam-
inated by the host galaxy light, we conclude that no signatures
of possible flux anomalies in the early Euclid light curve were
identified in SN 2024pvw.

5.1.2. SN 2024abla

This transient is a known Type Ia SN at a redshift z = 0.06 (see
classification reported in TNS by Gutiérrez et al. 2024) that was
observed by Euclid well before ground-based transient surveys
detected the object (see Fig. 7 lower panel). Deep upper lim-
its in the Euclid bands were obtained about 70 days before the
ATLAS discovery. Although we report only upper limits, this
demonstrates Euclid’s capacity to make very early time obser-
vations. Whilst no precursor would be expected to be observed
on this timescale for this system, some precursor activity before
core-collapse SNe is often reported (e.g., Pastorello et al. 2007;
Ofek et al. 2013). The precursors have been observed at a range
of timescales, and in many different kinds of core-collapse SNe
including typical Type II SNe (e.g., Jacobson-Galán et al. 2022),
interacting SNe (e.g., Strotjohann et al. 2021; Brennan et al.
2024), and superluminous SNe (e.g., Nicholl & Smartt 2016;
Angus et al. 2019). The origins of such precursor activities are
not well understood, but are likely linked to enhanced mass loss
prior to explosion. During the Euclid mission, it is possible that
we will have similar early time observations for core-collapse
SNe that will allow us to constrain the nature of such precursor
activity.

5.2. Transients observed close to the peak of the light curve

5.2.1. AT 2024pcm

AT 2024pcm was identified as a SN candidate by ZTF (Soller-
man et al. 2024). Probably due to its relatively faint dis-
covery magnitude (gZTF = 20.6), no spectroscopic classifi-
cation is available. The light curve is consistent with both
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Fig. 7. Top: Light curve of SN 2024pvw. The Euclid observations oc-
curred before the ground-based survey discovery, and the resulting Eu-
clid detections provide the earliest photometry on the light curve. The
curves show a Type Ia SN light curve template in corresponding bands.
Bottom: Light curve of SN 2024abla. The Euclid observations occurred
almost three months before the peak.

type Ia and core-collapse SNe (Fig. 8). We consider each in
turn. If the host galaxy is the irregular spiral, GALEXASC
J180413.45+672932.1 (z = 0.0583), then the peak g-band mag-
nitude is −18.1 i.e., underluminous by about 1 mag Cf. nor-
mal SNe Ia. The lack of a secondary maximum in the ATLAS
o-band would be consistent with this. Although the ATLAS
o-band lightcurve is sparsely sampled, it encompasses redder
wavelengths (than ZTFr) where the secondary maximum is more
prominent. The single Euclid observation in the JE band, taken
a week after the ZTF g-band peak, is MJ = −16.8. This im-
plies a decline of 1.5 mag in 7 days, assuming a peak JE-band
magnitude for a normal SNe Ia of −18.27 (Wood-Vasey et al.
2008). Such a rapid decline would be unexpected. Taken to-
gether, the optical and near-IR photometry suggest that the rise
to optical peak is too fast (about 9 days taking the last ZTF non-
detection into account), and the decline from presumed near-IR
peak is also too rapid for AT 2024pcm to be a normal type Ia
SN. No correction for extinction has been applied, but we note
that SN 2024pcm occurred in a relatively isolated region. There
appears to be an extended source closer to the location of the SN
than GALEXASC J180413.45+672932.1, but further informa-
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Fig. 8. Light curve of AT 2024pcm. The Euclid observations occurred
during the ground-based survey observations, and the resulting Euclid
detections provide NIR photometry 7 days after the g-band light curve
peak. Note it was only possible to make a measurement in JE, see dis-
cussion in Sect. 3.1.

tion on this other source is unfortunately not available. While the
rapid rise to g-band peak, the shape of the r-band light curve, and
the absolute peak magnitudes (as above) could all be consistent
with certain core-collapse SNe, its large (around 13 kpc) pro-
jected offset from GALEXASC J180413.45+672932.1 is note-
worthy, but not unprecedented. Further imaging data may shed
more light on this SN.

5.3. Transients observed long after ground based transient
survey discovery

Here we show examples of transients observed by Euclid long
after the ground-based transient survey discovery date. Because
of its sensitivity, Euclid can detect these transients even after
their light curves have faded below the detection limit of ground-
based transient surveys. The two selected examples, shown in
Fig. 9, were both detected by Euclid hundreds of days after the
peak of their respective light curves. In both cases, detections
were made in the IE, YE, and HE bands, while we obtained upper
limits in the JE band.

5.3.1. SN 2023uqu

SN 2023uqu is a Type Ia SN at z = 0.04 (Balcon 2023). The Eu-
clid photometry of this SN is presented in the top panel of Fig. 9.
NIR light curves of Type Ia SNe are often observed to have a
plateau phase at around 150–500 days (Graur et al. 2020; Deck-
ers et al. 2023). The Euclid NIR photometry is consistent with
the brightness of a faint NIR plateau (Fig. 9), although we cannot
discuss the existence of the NIR plateau with only a single-epoch
observation. Understanding the diversity in the late-phase NIR
light curves in Type Ia SNe would be essential in understand-
ing the radiative transfer processes in Type Ia SN ejecta (e.g.,
Axelrod 1980; Fransson et al. 1996).

5.3.2. SN 2023aew

SN 2023aew was observed by Euclid about 300 days after the
final detection by ZTF (Fig. 9, bottom). SN 2023aew is a pe-

Article number, page 9 of 27



A&A proofs: manuscript no. output

60200 60250 60300 60350 60400 60450 60500 60550

MJD (days)

16

18

20

22

24

26

M
ag

n
it

u
d

e

271.0 days post-peak

g
−
I E

=
6.

3
m

ag
SN 2023uqu / ZTF23abijopy : SN Ia at z = 0.04

ATLAS c-band

ATLAS o-band

ZTF r-band detection

ZTF g-band detection

TNS Disc. Mag. r-ZTF

Euclid IE

Euclid YE

Euclid JE Upper Limit

Euclid HE

Graur et al. (2020)

59900 60000 60100 60200 60300 60400 60500 60600

MJD (days)

16

18

20

22

24

26

M
ag

n
it

u
d

e

435.9 days post-peak

g − IE=9.5 mag

SN 2023aew / ZTF23aaawbsc : SN IIb → SN Ibc at z = 0.025

ATLAS c-band

ATLAS o-band

ZTF r-band detection

ZTF g-band detection

TNS Disc. Mag. r-ZTF

Euclid IE

Euclid YE

Euclid JE Upper Limit

Euclid HE

TESS-Red

Fig. 9. Light curves of SN 2023uqu (top) and SN 2023aew (bottom).
These two SNe were observed and detected by Euclid long after they
faded beyond the limit of the ground-based surveys. The dashed line in
the top panel is the faint-branch H-band light curve template of Type Ia
SNe from Graur et al. (2020).

culiar SN, which changed its spectroscopic type from Type IIb
to Type Ibc (Sharma et al. 2024; Kangas et al. 2024). The
light curve shows multiple peaks. The initial rise was serendipi-
tously observed by Transiting Exoplanet Survey Satellite (TESS;
Ricker et al. 2015) and the second peak was observed by ground-
based surveys. The Euclid detection corresponds to 436 days
after the second peak. The nature of SN 2023aew is not clear.
In particular, the luminosity source causing the multiple peaks
has been debated. The final detection in the ZTF r band is
20.3 ± 0.2 at MJD = 60211.2 days and the Euclid detection in
the IE band is 26.21 ± 0.06 at MJD = 60509.2 days. Apply-
ing the redshift of 0.025, the decline rate in the optical band
during this time is 0.02 mag day−1. Although this decline rate
is faster than that expected from the nuclear decay of 56Co →
56Fe (0.0098 mag day−1), which is a major late-phase luminos-
ity source of Type Ibc SNe, the decline rates in the R and I
bands in Type Ibc SNe can be faster in the late phases (e.g.,
0.017 mag day−1 in the Type Ibc sample in Hunter et al. 2009)
because of the γ-ray leakage. Thus, the measured decline rate is
consistent with the canonical nuclear decay energy input.

Besides the nuclear decay energy, magnetar spin-down,
black-hole accretion, and CSM interaction are suggested to be

possible power sources forming the second peak (Sharma et al.
2024; Kangas et al. 2024). The light curve decay rate is expected
to become slow in late phases in the cases of magnetar spin-
down (e.g., Nicholl et al. 2018) and black-hole accretion (e.g.,
Dexter & Kasen 2013; Moriya et al. 2018). However, 435.9 days
after the peak is still not late enough to observe the predicted de-
crease in the light curve decay rate (e.g., Nicholl et al. 2018). In
the case of the CSM interaction explanation, the observed light
curve decay rate may be consistent, depending on the CSM con-
figuration. It is also possible that the dust formation affects the
decline rate in the optical, but we do not observe a significant
flux excess in the Euclid NIR bands. Thus, these power sources
could not be excluded by the Euclid observation presented here.
A later phase observation of SN 2023aew by JWST at around
1000 days, combined with this Euclid observation, would be able
to provide a strong constraint on its mysterious power source.

6. Transients previously classified as hostless

The depth of Euclid photometry, even in single epoch images
such as those released in Q1, enables the detection of faint host
galaxies. In some cases, Euclid can detect the host of transients
that were previously classed as ‘hostless’ or ‘orphans’.

In our input target list, 19 objects were classified as orphans
by the Sherlock system of Lasair. Eight of these were in fact
close to a large galaxy that had presumably been missed by the
Sherlock system. The rest showed no host galaxy in the SDSS or
in the Legacy survey DR10 images, but showed a faint detection
close to the transient position in the Euclid VIS images. Based on
the detection within the Euclid images, the MER catalogue (Eu-
clid source catalogue containing photometric and morphological
information, see Euclid Collaboration: Romelli et al. 2025, for a
full description) provides a point-like probability for all sources
that are detected in VIS. Furthermore, during the PHZ classifi-
cation (see Euclid Collaboration: Tucci et al. 2025, for the full
details), Euclid also provides galaxy, QSO, and star probabili-
ties for the source. The probabilities for the other 11 sources are
shown in Table 3.

Based on this, the first five sources (AT 2023mrk, AT
2024thv, AT 2024tjh, AT 2024tkt, and AT 2024zjg) have high
probabilities of being galaxies. In fact, the clearest case for the
detection of an underlaying host galaxy is for the late-time obser-
vation of AT 2023mrk, which showed clear photometric evolu-
tion akin to a SN around peak (see Fig. C.2). For AT 2024tkt and
AT 2024zjg, we clearly still detect the transient as a point-like
source, on top of a faint extended source which is most likely to
be the underlying host galaxy (see Fig. 10).

The remaining six sources (AT 2024tld, AT 2024tkg, AT
2024tsi, AT 2024tsv, AT 2024tny, and AT 2024zdi) have point-
like aspects and could either be late-time detections of the tran-
sient event in compact dwarf galaxy, variable stars, or QSOs.
Each of these only have one detection reported in TNS. While
for AT 2024tld and AT 2024tkg we found a magnitude difference
of about 2, indicating either a true transient event or a variable
source, AT 2024tsi and AT 2024tny also show changes in mag-
nitude, and AT 2024tsv seems to have a constant magnitude.

Euclid VIS images showing the five new probable host
galaxy detections, along with the previous Legacy survey DR10
images, are shown in Fig. 10. With detections down to depths
of IE ≈ 26, these examples highlight the power of Euclid to un-
cover potential faint underlying hosts of orphan transients. With-
out template images, however, we cannot separate the contribu-
tions from the host and the transient that may still be present at
the time of observation. Therefore, although these sources have
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photometric redshifts and physical parameter estimates from the
Euclid SED fitting, we refrain from quoting these until we have
templates for image subtraction.

In general, identification of a previously unknown host
galaxy may aid in the classification of a transient, particularly
if a redshift can be determined. Aside from finding potential
(faint) host galaxies of previous apparently ‘hostless’ transients,
the superior spatial resolution afforded by Euclid will allow for
firmer host associations. In addition, correct identification of the
host and measurement of its properties are important in the con-
text of cosmological measurements using Type Ia SNe (e.g., Qu
et al. 2024). Correlations have been found between the Hubble
residual and host galaxy properties such as host galaxy mass,
size and specific star formation rate (Kelly et al. 2010; Lampeitl
et al. 2010; Sullivan et al. 2010), where the Hubble residual is
the difference between the inferred distance modulus to the Type
Ia SN, calculated from its apparent luminosity with corrections
based on light curve width and colour, and the expected value at
the SN redshift based on the best-fit cosmological model. Hence,
in modern Type Ia SN cosmology analyses, corrections are often
made to individual SN distance measurements based on the host
galaxy properties. When studying the host galaxies of high red-
shift Type Ia SN from the SDSS-II and DES-5yr SN Ia samples,
Lampeitl et al. (2010) and Qu et al. (2024) found that 7% and
6% of Type Ia SNe were ‘hostless’ to the limits of those surveys
(approx r ≈ 23 and r ≈ 25, respectively). Based on our measure-
ments from single-epoch Q1 images, we see that Euclid offers
the possibility to detect fainter host galaxies for cosmological
samples of Type Ia SNe to IE ≈ 26 in the EWS, and significantly
fainter in the EDFs as their depth is built up over the duration of
the mission.

Table 3. Properties of the sources detected by Euclid associated with
the eleven previously hostless transients.

Name Point-like Galaxy QSO Star
prob. prob. prob. prob.

AT 2023mrk 0.116 0.839 0.067 0.175
AT 2024thv 0.030 0.927 0.056 0.004
AT 2024tjh 0.002 0.854 0.223 0.014
AT 2024tkt 0.038 0.738 0.418 0.108
AT 2024zjg 0.521 0.741 0.518 0.259
AT 2024tld 0.585 0.400 0.431 0.541
AT 2024tkg 0.568 0.409 0.166 0.569
AT 2024tsi 0.972 0.353 0.558 0.443
AT 2024tsv 0.867 0.236 0.840 0.484
AT 2024tny 0.680 0.211 0.505 0.564
AT 2024zdi 0.796 0.365 0.583 0.386

7. Conclusions

We have followed up 161 known transients that were discovered
up to 3 years prior to the Euclid Q1 data release observations. Of
these targets we were able to detect 59 sources in IE and 40, 36,
and 30 in YE, JE, and HE respectively with a further 93 sources in
IE and 91, 88, and 93 in YE, JE, and HE, respectively giving upper
limits. The relatively high number of upper limits, as opposed to
detections arises from using a single epoch of observation, since
it is not possible to unambiguously measure the magnitude of
transients without subtracting a template image. In cases where
the transient appears to be isolated or on a smooth background,
we can be more confident of the photometric measurement than

Fig. 10. Example ‘orphans’, i.e., transients that previously had no host
galaxy detection. Top row: the field around AT 2023mrk, showing the
colour Legacy Survey DR10 image (Dey et al. 2019) and the deeper
Euclid IE image, both 40′′ on a side, and a zoomed-in section of the IE

image 5′′ on a side, corresponding to the white box in the previous two
images. The following rows show the same information for AT 2024thv,
AT 2024tjh, AT 2024tkt, and AT2024zjg. The black box marked on the
zoomed-in IE images is 2′′ across, centred on the transient position re-
ported in TNS. In these cases, Euclid has detected an extended object
close to the transient position (in addition to the transient itself in some
cases), which is likely to be the host galaxy.

in cases where the transient is close to another bright source, e.g.,
the galaxy nucleus.

The detections give (when disregarding JADES sources) a
recovery fraction of 61% of transients discovered in the year be-
fore Euclid IE observation, rising to 69% for those discovered in
the 6 months before observation, and 82% for those discovered
100 days before observation.

In this work we followed up on transients within a sky area
of 63.1 deg2, while the sky area to be released in Euclid DR1 is
anticipated to be 1900 deg2. Applying the same temporal con-
straints to the transient follow up we used here, it would suggest
that in excess of 5500 transients will be available for follow up.
However, following the start of LSST science operations (mid
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2025), we anticipate that this number will increase substantially,
particularly into future data releases.

Euclid DR1 will overcome the ambiguity between detections
and upper limits that we have found in this work, because the
EDFs will have multiple epochs available, allowing image sub-
tractions to be performed. Beyond follow-up observations we
further anticipate that the EDF survey data will allow us to dis-
cover new transients using Euclid alone which are beyond the
reach of ground-based surveys. The ambiguity raised here be-
tween detections and upper limits will persist into the EWS and
as such it may be necessary to employ strategies such as scene
modelling using high-resolution ground imaging from surveys
like LSST in order to overcome this challenge.

Future work in the field of transients with Euclid will in-
clude the generation of joint derived data products with the Vera
C. Rubin telescope (Guy et al. 2022). These will include joint
cutouts and light curves of transients using photometry in all of
the filters provided by both telescopes. This will enhance SNe
rates and cosmology, as well as improved study of extragalactic
transient environments. Early examples of such products can be
seen in Duffy et al. (in prep.)
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Appendix B: Target IE cutouts

In this appendix we show the IE cutouts for each of the the TNS reported targets we followed up in this work. This is primarily for
reference and to demonstrate visually the capablity of Euclid to detect these objects.

AT 2021abmd AT 2021abvx AT 2021ahou AT 2021ufr AT 2021vje AT 2021xdk

AT 2021zha AT 2022acr AT 2022aenb AT 2022bpn AT 2022bzw AT 2022cbq

AT 2022cxg AT 2022pxw AT 2022tqo AT 2022xxw AT 2022yxt AT 2023aafo

AT 2023abyp AT 2023adss AT 2023adst AT 2023adsu AT 2023adsv AT 2023adsw

AT 2023adsx AT 2023adsy AT 2023adsz AT 2023adta AT 2023adtb AT 2023adtc

AT 2023adtd AT 2023adte AT 2023adtf AT 2023adtg AT 2023adth AT 2023adtj

AT 2023adtk AT 2023adtl AT 2023adtm AT 2023adtn AT 2023adto AT 2023adtp

AT 2023adtq AT 2023adtr AT 2023adts AT 2023adtt AT 2023adtu AT 2023adtv

Fig. B.1. 12′′ ×12′′ cutouts of the targets as seen in Euclid IE mosaic images. The red circles are centred on the position of the transient as reported
in TNS. A total of 156 cutouts are shown, corresponding to the total number of cutouts for which it was possible to recover an IE cutout, including
those where the photometric procedure failed (see Sect. 2.2 for a discussion of this).

Article number, page 21 of 27



A&A proofs: manuscript no. output

AT 2023adtw AT 2023adtx AT 2023adty AT 2023adtz AT 2023adua AT 2023adub

AT 2023aqk AT 2023aqr AT 2023btx AT 2023cxi AT 2023ea AT 2023fhq

AT 2023huo AT 2023mrk AT 2023ncz AT 2023pfg AT 2023qcd AT 2023qyv

AT 2023spc AT 2023tjw AT 2023uke AT 2023vcs AT 2023veh AT 2023vnw

AT 2023vnx AT 2023vny AT 2023vnz AT 2023voa AT 2023vob AT 2023voc

AT 2023zvg AT 2024aaoo AT 2024abst AT 2024bkj AT 2024clt AT 2024eht

AT 2024eta AT 2024fw AT 2024gja AT 2024iml AT 2024kkp AT 2024mou

AT 2024mzs AT 2024npq AT 2024pcm AT 2024pnv AT 2024tdq AT 2024tdr

AT 2024tds AT 2024tdv AT 2024tdw AT 2024tdx AT 2024tdy AT 2024tgm

Fig. B.2. As Fig. B.1
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AT 2024tgn AT 2024tgo AT 2024tgw AT 2024tgx AT 2024thq AT 2024thv

AT 2024tix AT 2024tjh AT 2024tkg AT 2024tkn AT 2024tkt AT 2024tkx

AT 2024tld AT 2024tli AT 2024tmf AT 2024tmg AT 2024tmz AT 2024tnw

AT 2024tnx AT 2024tny AT 2024tpf AT 2024tqg AT 2024tql AT 2024tqm

AT 2024trh AT 2024tsi AT 2024tsv AT 2024vwt AT 2024wdv AT 2024xjo

AT 2024yii AT 2024ymn AT 2024zdi AT 2024zed AT 2024zee AT 2024zef

AT 2024zeg AT 2024zfy AT 2024zgs AT 2024zih AT 2024zin AT 2024zis

AT 2024zjg AT 2024zjh SN 2021aele SN 2022ooo SN 2022sje SN 2022wen

SN 2023aew SN 2023psq SN 2023uqu SN 2023vcn SN 2024abla SN 2024pvw

Fig. B.3. As Fig. B.1
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Appendix C: Light curves

In this appendix we show additional light curves of several transients. In Fig. C.1 we show the light curves of the classified SNe
listed in Table A.1 that are not discussed in Sect. 5. In Fig. C.2 we show additional light curves of some of the unclassified transients
listed in Table A.1, showing Euclid photometry detections. In Fig. C.3 we show light curves likely produced by AGN activity
(AT 2021vje), by stellar activity (AT 2022bpn), or of unclear nature (AT 2024bkj). Finally, in Fig. C.4 we show some examples of
poorly-sampled light curves discovered in the JADES (AT 2023adsv and AT 2023adts) and WFST (AT 2024tgn) surveys.
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Fig. C.1. Light curves plots of classified SNe including estimates of the epochs of the Euclid detections and variations in magnitudes from peak,
for some of them.
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Fig. C.2. Light curves plots of some unclassified transients including Euclid photometry or upper limits.
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Fig. C.3. Light curves plots of some unclassified transients likely produced by AGN activity (AT 2021vje), by stellar activity (AT 2022bpn), or of
unclear nature (AT 2024bkj).
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Fig. C.4. Light curves plots of some poorly sampled unclassified transients discovered in the JADES (AT 2023adsv and AT 2023adts) and WFST
(AT 2024tgn) surveys and including Euclid photometry or upper limits.
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